Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5. CONDUCTING RESEARCH

5.1 Research Terminology

You will undoubtedly be required to “conduct research” for a course assignment or “include research” to support your ideas. While this may seem a bit intimidating, remember that engaging in research is basically just using a systematic process to find out more information about your topic. Nicholas Walliman, in his handbook Research Methods: The Basics , defines research methods as “the tools and techniques for doing research.” [1] These techniques include collecting, sorting, and analyzing the information and data you find. The better the tools and more comprehensive the techniques you employ, the more effective your research will be. By extension, the more effective your research is, the more credible and persuasive your argument will be.

Here are some basic terms and definitions you should be familiar with:

Research :  the systematic process of finding out more about something than you already know, ideally so that you can prove a hypothesis, produce new knowledge and understanding, and make evidence-based decisions.

Research Methods:   techniques of collecting, sorting, and analyzing information/data.

Data:   bits of information.

The typical kinds of research sources you will use can be grouped into three broad categories:

  • Primary Sources:   research you might conduct yourself in lab experiments and product testing, through surveys, observations, measurements, interviews, site visits, prototype testing, beta testing, etc . These can also include published raw statistical data, historical records, legal documents, firsthand historical accounts, and original creative works.
  • Secondary Sources :  written sources that discuss, analyze, and interpret primary data, such as published research and studies, reviews of these studies, meta-analyses, and formal critiques.
  • Tertiary Sources :  reference sources such as dictionaries, encyclopedias, and handbooks that provide a consolidation of primary and secondary information. They are useful to gain a general understanding of your topic and major concepts, lines of inquiry, or schools of thought in the field.

Data can be categorized in several ways:

Data that have been directly observed, experienced and recorded close to the event. This is data that you might create yourself by

: collecting numbers indicating amounts (temperature, size, ) : with your own senses or with instruments (camera, microscope) : conducting interviews, focus groups, surveys, polls, or questionnaires : experience of doing or seeing something (visit the site, tour the facility, manipulate models or simulations, Beta test, )

:  primary research done in an academic setting that includes gathering information from human subjects requires strict protocols and will likely require ethics approval. Ask your instructor for guidance and see chapter

Comes from sources that record, analyze, and interpret primary data. It is critical to evaluate the credibility of these sources. You might find such data in

refereed academic studies published in academic journals books, trade magazines, newspapers, popular media, . popular media sources, industry websites, government websites, non-profit organizations TV, radio, film, such as documentaries, news, podcasts, etc. annual reports, production records, committee reports, survey results, .

Uses numbers to describe information that can be measured quantitatively. This data is used to measure, make comparisons, examine relationships, test hypotheses, explain, predict, or even control.

Uses words to record and describe the data collected; often describes people’s feelings, judgments, emotions, customs, and beliefs that can only be expressed in descriptive words, not in numbers. This includes “anecdotal data” or personal experiences.

Research methods are often categorized as quantitative, qualitative or “mixed method.” Some projects, like a science, require the use of the scientific method of inquiry, observation, quantitative data collection, analysis and conclusions to test a hypothesis. Other kinds of projects take a more deductive approach and gather both quantitative and qualitative evidence to support a thesis, position, or recommendation. The research methods you choose will be determined by the goals and scope of your project, and by your intended audience’s expectations. More specific methodologies, such as ways to structure the analysis of your data, include the following:

  • Cost/benefit Analysis :  determines how much something will cost vs what measurable benefits it will create, and may lead to a calculation of “return on investment” (ROI).
  • Life-cycle Analysis :  determines overall sustainability of a product or process, from manufacturing, through lifetime use, to disposal (you can also perform comparative life-cycle analyses, or specific life cycle stage analysis)
  • Comparative Analysis :  compares two or more options to determine which is the “best” solution (given specific problem criteria such as goals, objectives, and constraints)
  • Process Analysis :  studies each aspect of a process to determine if all parts and steps work efficiently together to create the desired outcome.
  • Sustainability Analysis :  uses concepts such as the “triple bottom line” or “ three pillars of sustainability ” to analyze whether a product or process is environmentally, economically, and socially sustainable.

In all cases, the way you collect, analyze, and use data must be ethical and consistent with professional standards of honesty and integrity. Lapses in integrity can not only lead to poor quality reports in an academic context (poor grades and academic dishonesty penalties), but in the workplace, these lapses can also lead to lawsuits, loss of job, and even criminal charges. Some examples of these lapses include

  • Fabricating your own data (making it up to suit your purpose)
  • Ignoring data that disproves or contradicts your ideas
  • Misrepresenting someone else’s data or ideas
  • Using data or ideas from another source without acknowledgment or citation of the source.

Failing to cite quoted, paraphrased, or summarized sources properly is one of the most common lapses in academic integrity, which is why your previous academic writing class spent considerable time and effort to give you a sophisticated understanding of how and why to avoid plagiarizing, as well as the consequences of doing so. If you would like to review this information, see Appendix C: Integrating Source Evidence into Your Writing , and consult the University of Victoria’s policy on Academic Integrity .

  • N. Walliman, Research Methods: The Basics . New York: Routledge, 2011 ↵

Technical Writing Essentials Copyright © 2019 by Suzan Last is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

Glossary of research terms.

  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

This glossary is intended to assist you in understanding commonly used terms and concepts when reading, interpreting, and evaluating scholarly research. Also included are common words and phrases defined within the context of how they apply to research in the social and behavioral sciences.

  • Acculturation -- refers to the process of adapting to another culture, particularly in reference to blending in with the majority population [e.g., an immigrant adopting American customs]. However, acculturation also implies that both cultures add something to one another, but still remain distinct groups unto themselves.
  • Accuracy -- a term used in survey research to refer to the match between the target population and the sample.
  • Affective Measures -- procedures or devices used to obtain quantified descriptions of an individual's feelings, emotional states, or dispositions.
  • Aggregate -- a total created from smaller units. For instance, the population of a county is an aggregate of the populations of the cities, rural areas, etc. that comprise the county. As a verb, it refers to total data from smaller units into a large unit.
  • Anonymity -- a research condition in which no one, including the researcher, knows the identities of research participants.
  • Baseline -- a control measurement carried out before an experimental treatment.
  • Behaviorism -- school of psychological thought concerned with the observable, tangible, objective facts of behavior, rather than with subjective phenomena such as thoughts, emotions, or impulses. Contemporary behaviorism also emphasizes the study of mental states such as feelings and fantasies to the extent that they can be directly observed and measured.
  • Beliefs -- ideas, doctrines, tenets, etc. that are accepted as true on grounds which are not immediately susceptible to rigorous proof.
  • Benchmarking -- systematically measuring and comparing the operations and outcomes of organizations, systems, processes, etc., against agreed upon "best-in-class" frames of reference.
  • Bias -- a loss of balance and accuracy in the use of research methods. It can appear in research via the sampling frame, random sampling, or non-response. It can also occur at other stages in research, such as while interviewing, in the design of questions, or in the way data are analyzed and presented. Bias means that the research findings will not be representative of, or generalizable to, a wider population.
  • Case Study -- the collection and presentation of detailed information about a particular participant or small group, frequently including data derived from the subjects themselves.
  • Causal Hypothesis -- a statement hypothesizing that the independent variable affects the dependent variable in some way.
  • Causal Relationship -- the relationship established that shows that an independent variable, and nothing else, causes a change in a dependent variable. It also establishes how much of a change is shown in the dependent variable.
  • Causality -- the relation between cause and effect.
  • Central Tendency -- any way of describing or characterizing typical, average, or common values in some distribution.
  • Chi-square Analysis -- a common non-parametric statistical test which compares an expected proportion or ratio to an actual proportion or ratio.
  • Claim -- a statement, similar to a hypothesis, which is made in response to the research question and that is affirmed with evidence based on research.
  • Classification -- ordering of related phenomena into categories, groups, or systems according to characteristics or attributes.
  • Cluster Analysis -- a method of statistical analysis where data that share a common trait are grouped together. The data is collected in a way that allows the data collector to group data according to certain characteristics.
  • Cohort Analysis -- group by group analytic treatment of individuals having a statistical factor in common to each group. Group members share a particular characteristic [e.g., born in a given year] or a common experience [e.g., entering a college at a given time].
  • Confidentiality -- a research condition in which no one except the researcher(s) knows the identities of the participants in a study. It refers to the treatment of information that a participant has disclosed to the researcher in a relationship of trust and with the expectation that it will not be revealed to others in ways that violate the original consent agreement, unless permission is granted by the participant.
  • Confirmability Objectivity -- the findings of the study could be confirmed by another person conducting the same study.
  • Construct -- refers to any of the following: something that exists theoretically but is not directly observable; a concept developed [constructed] for describing relations among phenomena or for other research purposes; or, a theoretical definition in which concepts are defined in terms of other concepts. For example, intelligence cannot be directly observed or measured; it is a construct.
  • Construct Validity -- seeks an agreement between a theoretical concept and a specific measuring device, such as observation.
  • Constructivism -- the idea that reality is socially constructed. It is the view that reality cannot be understood outside of the way humans interact and that the idea that knowledge is constructed, not discovered. Constructivists believe that learning is more active and self-directed than either behaviorism or cognitive theory would postulate.
  • Content Analysis -- the systematic, objective, and quantitative description of the manifest or latent content of print or nonprint communications.
  • Context Sensitivity -- awareness by a qualitative researcher of factors such as values and beliefs that influence cultural behaviors.
  • Control Group -- the group in an experimental design that receives either no treatment or a different treatment from the experimental group. This group can thus be compared to the experimental group.
  • Controlled Experiment -- an experimental design with two or more randomly selected groups [an experimental group and control group] in which the researcher controls or introduces the independent variable and measures the dependent variable at least two times [pre- and post-test measurements].
  • Correlation -- a common statistical analysis, usually abbreviated as r, that measures the degree of relationship between pairs of interval variables in a sample. The range of correlation is from -1.00 to zero to +1.00. Also, a non-cause and effect relationship between two variables.
  • Covariate -- a product of the correlation of two related variables times their standard deviations. Used in true experiments to measure the difference of treatment between them.
  • Credibility -- a researcher's ability to demonstrate that the object of a study is accurately identified and described based on the way in which the study was conducted.
  • Critical Theory -- an evaluative approach to social science research, associated with Germany's neo-Marxist “Frankfurt School,” that aims to criticize as well as analyze society, opposing the political orthodoxy of modern communism. Its goal is to promote human emancipatory forces and to expose ideas and systems that impede them.
  • Data -- factual information [as measurements or statistics] used as a basis for reasoning, discussion, or calculation.
  • Data Mining -- the process of analyzing data from different perspectives and summarizing it into useful information, often to discover patterns and/or systematic relationships among variables.
  • Data Quality -- this is the degree to which the collected data [results of measurement or observation] meet the standards of quality to be considered valid [trustworthy] and  reliable [dependable].
  • Deductive -- a form of reasoning in which conclusions are formulated about particulars from general or universal premises.
  • Dependability -- being able to account for changes in the design of the study and the changing conditions surrounding what was studied.
  • Dependent Variable -- a variable that varies due, at least in part, to the impact of the independent variable. In other words, its value “depends” on the value of the independent variable. For example, in the variables “gender” and “academic major,” academic major is the dependent variable, meaning that your major cannot determine whether you are male or female, but your gender might indirectly lead you to favor one major over another.
  • Deviation -- the distance between the mean and a particular data point in a given distribution.
  • Discourse Community -- a community of scholars and researchers in a given field who respond to and communicate to each other through published articles in the community's journals and presentations at conventions. All members of the discourse community adhere to certain conventions for the presentation of their theories and research.
  • Discrete Variable -- a variable that is measured solely in whole units, such as, gender and number of siblings.
  • Distribution -- the range of values of a particular variable.
  • Effect Size -- the amount of change in a dependent variable that can be attributed to manipulations of the independent variable. A large effect size exists when the value of the dependent variable is strongly influenced by the independent variable. It is the mean difference on a variable between experimental and control groups divided by the standard deviation on that variable of the pooled groups or of the control group alone.
  • Emancipatory Research -- research is conducted on and with people from marginalized groups or communities. It is led by a researcher or research team who is either an indigenous or external insider; is interpreted within intellectual frameworks of that group; and, is conducted largely for the purpose of empowering members of that community and improving services for them. It also engages members of the community as co-constructors or validators of knowledge.
  • Empirical Research -- the process of developing systematized knowledge gained from observations that are formulated to support insights and generalizations about the phenomena being researched.
  • Epistemology -- concerns knowledge construction; asks what constitutes knowledge and how knowledge is validated.
  • Ethnography -- method to study groups and/or cultures over a period of time. The goal of this type of research is to comprehend the particular group/culture through immersion into the culture or group. Research is completed through various methods but, since the researcher is immersed within the group for an extended period of time, more detailed information is usually collected during the research.
  • Expectancy Effect -- any unconscious or conscious cues that convey to the participant in a study how the researcher wants them to respond. Expecting someone to behave in a particular way has been shown to promote the expected behavior. Expectancy effects can be minimized by using standardized interactions with subjects, automated data-gathering methods, and double blind protocols.
  • External Validity -- the extent to which the results of a study are generalizable or transferable.
  • Factor Analysis -- a statistical test that explores relationships among data. The test explores which variables in a data set are most related to each other. In a carefully constructed survey, for example, factor analysis can yield information on patterns of responses, not simply data on a single response. Larger tendencies may then be interpreted, indicating behavior trends rather than simply responses to specific questions.
  • Field Studies -- academic or other investigative studies undertaken in a natural setting, rather than in laboratories, classrooms, or other structured environments.
  • Focus Groups -- small, roundtable discussion groups charged with examining specific topics or problems, including possible options or solutions. Focus groups usually consist of 4-12 participants, guided by moderators to keep the discussion flowing and to collect and report the results.
  • Framework -- the structure and support that may be used as both the launching point and the on-going guidelines for investigating a research problem.
  • Generalizability -- the extent to which research findings and conclusions conducted on a specific study to groups or situations can be applied to the population at large.
  • Grey Literature -- research produced by organizations outside of commercial and academic publishing that publish materials, such as, working papers, research reports, and briefing papers.
  • Grounded Theory -- practice of developing other theories that emerge from observing a group. Theories are grounded in the group's observable experiences, but researchers add their own insight into why those experiences exist.
  • Group Behavior -- behaviors of a group as a whole, as well as the behavior of an individual as influenced by his or her membership in a group.
  • Hypothesis -- a tentative explanation based on theory to predict a causal relationship between variables.
  • Independent Variable -- the conditions of an experiment that are systematically manipulated by the researcher. A variable that is not impacted by the dependent variable, and that itself impacts the dependent variable. In the earlier example of "gender" and "academic major," (see Dependent Variable) gender is the independent variable.
  • Individualism -- a theory or policy having primary regard for the liberty, rights, or independent actions of individuals.
  • Inductive -- a form of reasoning in which a generalized conclusion is formulated from particular instances.
  • Inductive Analysis -- a form of analysis based on inductive reasoning; a researcher using inductive analysis starts with answers, but formulates questions throughout the research process.
  • Insiderness -- a concept in qualitative research that refers to the degree to which a researcher has access to and an understanding of persons, places, or things within a group or community based on being a member of that group or community.
  • Internal Consistency -- the extent to which all questions or items assess the same characteristic, skill, or quality.
  • Internal Validity -- the rigor with which the study was conducted [e.g., the study's design, the care taken to conduct measurements, and decisions concerning what was and was not measured]. It is also the extent to which the designers of a study have taken into account alternative explanations for any causal relationships they explore. In studies that do not explore causal relationships, only the first of these definitions should be considered when assessing internal validity.
  • Life History -- a record of an event/events in a respondent's life told [written down, but increasingly audio or video recorded] by the respondent from his/her own perspective in his/her own words. A life history is different from a "research story" in that it covers a longer time span, perhaps a complete life, or a significant period in a life.
  • Margin of Error -- the permittable or acceptable deviation from the target or a specific value. The allowance for slight error or miscalculation or changing circumstances in a study.
  • Measurement -- process of obtaining a numerical description of the extent to which persons, organizations, or things possess specified characteristics.
  • Meta-Analysis -- an analysis combining the results of several studies that address a set of related hypotheses.
  • Methodology -- a theory or analysis of how research does and should proceed.
  • Methods -- systematic approaches to the conduct of an operation or process. It includes steps of procedure, application of techniques, systems of reasoning or analysis, and the modes of inquiry employed by a discipline.
  • Mixed-Methods -- a research approach that uses two or more methods from both the quantitative and qualitative research categories. It is also referred to as blended methods, combined methods, or methodological triangulation.
  • Modeling -- the creation of a physical or computer analogy to understand a particular phenomenon. Modeling helps in estimating the relative magnitude of various factors involved in a phenomenon. A successful model can be shown to account for unexpected behavior that has been observed, to predict certain behaviors, which can then be tested experimentally, and to demonstrate that a given theory cannot account for certain phenomenon.
  • Models -- representations of objects, principles, processes, or ideas often used for imitation or emulation.
  • Naturalistic Observation -- observation of behaviors and events in natural settings without experimental manipulation or other forms of interference.
  • Norm -- the norm in statistics is the average or usual performance. For example, students usually complete their high school graduation requirements when they are 18 years old. Even though some students graduate when they are younger or older, the norm is that any given student will graduate when he or she is 18 years old.
  • Null Hypothesis -- the proposition, to be tested statistically, that the experimental intervention has "no effect," meaning that the treatment and control groups will not differ as a result of the intervention. Investigators usually hope that the data will demonstrate some effect from the intervention, thus allowing the investigator to reject the null hypothesis.
  • Ontology -- a discipline of philosophy that explores the science of what is, the kinds and structures of objects, properties, events, processes, and relations in every area of reality.
  • Panel Study -- a longitudinal study in which a group of individuals is interviewed at intervals over a period of time.
  • Participant -- individuals whose physiological and/or behavioral characteristics and responses are the object of study in a research project.
  • Peer-Review -- the process in which the author of a book, article, or other type of publication submits his or her work to experts in the field for critical evaluation, usually prior to publication. This is standard procedure in publishing scholarly research.
  • Phenomenology -- a qualitative research approach concerned with understanding certain group behaviors from that group's point of view.
  • Philosophy -- critical examination of the grounds for fundamental beliefs and analysis of the basic concepts, doctrines, or practices that express such beliefs.
  • Phonology -- the study of the ways in which speech sounds form systems and patterns in language.
  • Policy -- governing principles that serve as guidelines or rules for decision making and action in a given area.
  • Policy Analysis -- systematic study of the nature, rationale, cost, impact, effectiveness, implications, etc., of existing or alternative policies, using the theories and methodologies of relevant social science disciplines.
  • Population -- the target group under investigation. The population is the entire set under consideration. Samples are drawn from populations.
  • Position Papers -- statements of official or organizational viewpoints, often recommending a particular course of action or response to a situation.
  • Positivism -- a doctrine in the philosophy of science, positivism argues that science can only deal with observable entities known directly to experience. The positivist aims to construct general laws, or theories, which express relationships between phenomena. Observation and experiment is used to show whether the phenomena fit the theory.
  • Predictive Measurement -- use of tests, inventories, or other measures to determine or estimate future events, conditions, outcomes, or trends.
  • Principal Investigator -- the scientist or scholar with primary responsibility for the design and conduct of a research project.
  • Probability -- the chance that a phenomenon will occur randomly. As a statistical measure, it is shown as p [the "p" factor].
  • Questionnaire -- structured sets of questions on specified subjects that are used to gather information, attitudes, or opinions.
  • Random Sampling -- a process used in research to draw a sample of a population strictly by chance, yielding no discernible pattern beyond chance. Random sampling can be accomplished by first numbering the population, then selecting the sample according to a table of random numbers or using a random-number computer generator. The sample is said to be random because there is no regular or discernible pattern or order. Random sample selection is used under the assumption that sufficiently large samples assigned randomly will exhibit a distribution comparable to that of the population from which the sample is drawn. The random assignment of participants increases the probability that differences observed between participant groups are the result of the experimental intervention.
  • Reliability -- the degree to which a measure yields consistent results. If the measuring instrument [e.g., survey] is reliable, then administering it to similar groups would yield similar results. Reliability is a prerequisite for validity. An unreliable indicator cannot produce trustworthy results.
  • Representative Sample -- sample in which the participants closely match the characteristics of the population, and thus, all segments of the population are represented in the sample. A representative sample allows results to be generalized from the sample to the population.
  • Rigor -- degree to which research methods are scrupulously and meticulously carried out in order to recognize important influences occurring in an experimental study.
  • Sample -- the population researched in a particular study. Usually, attempts are made to select a "sample population" that is considered representative of groups of people to whom results will be generalized or transferred. In studies that use inferential statistics to analyze results or which are designed to be generalizable, sample size is critical, generally the larger the number in the sample, the higher the likelihood of a representative distribution of the population.
  • Sampling Error -- the degree to which the results from the sample deviate from those that would be obtained from the entire population, because of random error in the selection of respondent and the corresponding reduction in reliability.
  • Saturation -- a situation in which data analysis begins to reveal repetition and redundancy and when new data tend to confirm existing findings rather than expand upon them.
  • Semantics -- the relationship between symbols and meaning in a linguistic system. Also, the cuing system that connects what is written in the text to what is stored in the reader's prior knowledge.
  • Social Theories -- theories about the structure, organization, and functioning of human societies.
  • Sociolinguistics -- the study of language in society and, more specifically, the study of language varieties, their functions, and their speakers.
  • Standard Deviation -- a measure of variation that indicates the typical distance between the scores of a distribution and the mean; it is determined by taking the square root of the average of the squared deviations in a given distribution. It can be used to indicate the proportion of data within certain ranges of scale values when the distribution conforms closely to the normal curve.
  • Statistical Analysis -- application of statistical processes and theory to the compilation, presentation, discussion, and interpretation of numerical data.
  • Statistical Bias -- characteristics of an experimental or sampling design, or the mathematical treatment of data, that systematically affects the results of a study so as to produce incorrect, unjustified, or inappropriate inferences or conclusions.
  • Statistical Significance -- the probability that the difference between the outcomes of the control and experimental group are great enough that it is unlikely due solely to chance. The probability that the null hypothesis can be rejected at a predetermined significance level [0.05 or 0.01].
  • Statistical Tests -- researchers use statistical tests to make quantitative decisions about whether a study's data indicate a significant effect from the intervention and allow the researcher to reject the null hypothesis. That is, statistical tests show whether the differences between the outcomes of the control and experimental groups are great enough to be statistically significant. If differences are found to be statistically significant, it means that the probability [likelihood] that these differences occurred solely due to chance is relatively low. Most researchers agree that a significance value of .05 or less [i.e., there is a 95% probability that the differences are real] sufficiently determines significance.
  • Subcultures -- ethnic, regional, economic, or social groups exhibiting characteristic patterns of behavior sufficient to distinguish them from the larger society to which they belong.
  • Testing -- the act of gathering and processing information about individuals' ability, skill, understanding, or knowledge under controlled conditions.
  • Theory -- a general explanation about a specific behavior or set of events that is based on known principles and serves to organize related events in a meaningful way. A theory is not as specific as a hypothesis.
  • Treatment -- the stimulus given to a dependent variable.
  • Trend Samples -- method of sampling different groups of people at different points in time from the same population.
  • Triangulation -- a multi-method or pluralistic approach, using different methods in order to focus on the research topic from different viewpoints and to produce a multi-faceted set of data. Also used to check the validity of findings from any one method.
  • Unit of Analysis -- the basic observable entity or phenomenon being analyzed by a study and for which data are collected in the form of variables.
  • Validity -- the degree to which a study accurately reflects or assesses the specific concept that the researcher is attempting to measure. A method can be reliable, consistently measuring the same thing, but not valid.
  • Variable -- any characteristic or trait that can vary from one person to another [race, gender, academic major] or for one person over time [age, political beliefs].
  • Weighted Scores -- scores in which the components are modified by different multipliers to reflect their relative importance.
  • White Paper -- an authoritative report that often states the position or philosophy about a social, political, or other subject, or a general explanation of an architecture, framework, or product technology written by a group of researchers. A white paper seeks to contain unbiased information and analysis regarding a business or policy problem that the researchers may be facing.

Elliot, Mark, Fairweather, Ian, Olsen, Wendy Kay, and Pampaka, Maria. A Dictionary of Social Research Methods. Oxford, UK: Oxford University Press, 2016; Free Social Science Dictionary. Socialsciencedictionary.com [2008]. Glossary. Institutional Review Board. Colorado College; Glossary of Key Terms. Writing@CSU. Colorado State University; Glossary A-Z. Education.com; Glossary of Research Terms. Research Mindedness Virtual Learning Resource. Centre for Human Servive Technology. University of Southampton; Miller, Robert L. and Brewer, John D. The A-Z of Social Research: A Dictionary of Key Social Science Research Concepts London: SAGE, 2003; Jupp, Victor. The SAGE Dictionary of Social and Cultural Research Methods . London: Sage, 2006.

  • << Previous: Independent and Dependent Variables
  • Next: 1. Choosing a Research Problem >>
  • Last Updated: Sep 4, 2024 9:40 AM
  • URL: https://libguides.usc.edu/writingguide

How to write a technical paper or a research paper

By michael ernst, april, 2005 last updated: july 1, 2024, which details to include, make the organization and results clear, getting started: overcoming writer's block and procrastination, writing style, computer program source code, numbers and measurements, processing data, related work, when to submit your paper for publication, responding to conference reviews, norman ramsey's advice, other resources, introduction.

This document describes several simple, concrete ways to improve your writing, by avoiding some common mistakes. The end of this document contains more resources for improving your writing.

Some people believe that writing papers, giving talks , and similar “marketing” activities are not part of research, but an adjunct to it or even an undesirable distraction. This view is inaccurate. The purpose of research is to increase the store of human knowledge, and so even the very best work is useless if you cannot effectively communicate it to the rest of the world. If a paper is poorly written, then readers might conclude you spent as little effort on the research that it describes.

Equally importantly, writing papers and giving talks will clarify your thinking and thereby improve your research. You may be surprised how difficult it is to clearly communicate your ideas and contributions; doing so will force you to understand them more deeply and enable you to improve them.

Know your message, and stay on message

The goal of writing a paper is to change people's behavior: for instance, to change the way they think about a research problem or to convince them to use a new approach. Determine your goal (also known as your thesis), and focus the paper around that goal.

As a general rule, your paper needs to convince the audience of three key points. If any of these is missing or unclear, the paper will not be compelling.

  • The problem is important . The problem has a significant impact and consequences. You can buttress your argument by showing that others consider the problem important.
  • The problem is hard . Explain that obvious techniques and existing approaches do not suffice. Showing what others have tried can be effective here.
  • You have solved the problem. This is often demonstrated via experiments. Keep in mind how you expect the behavior of readers to change once they appreciate your contributions. You'll also need to convince readers that your contributions are novel. When expressing this, it is helpful to explain why no one else thought of your approach before (or why, if they thought of it, they would have rejected the approach) , and whether similar insights apply to other problems.

Before you write your paper, you need to understand your audience. Who will read your paper? What are their backgrounds, motivations, interests, and beliefs? What are the key points you want a reader person to take away from your paper? Once you know the thesis and audience, you can determine what points your document should make to achieve its purpose.

For each point in your paper, you need to explain both what and why . Start with what, but don't omit why. For example, it is not enough to state how an algorithm works; you should explain why it works in that way, or why another way of solving the problem would be different. Similarly, it is not sufficient to present a figure or facts. You must also ensure that reader understands the significance or implications of the figure and what parts of it are most important.

Your purpose is to communicate specific ideas, and everything about your paper should contribute to this goal. If any part of the paper does not support your main point, then delete or change that part. You must be ruthless in cutting every irrelevant detail, however true it may be. Everything in your paper that does not support your main point distracts from it.

Write for the readers, rather than writing for yourself. In particular, think about what matters to the intended audience, and focus on that. It is not necessarily what you personally find most intriguing.

A common mistake is to focus on what you spent the most time on. Do not write your paper as a chronological narrative of all the things that you tried, and do not devote space in the paper proportionately to the amount of time you spent on each task. Most work that you do will never show up in any paper; the purpose of infrastructure-building and exploration of blind alleys is to enable you to do the small amount of work that is worth writing about. Another way of stating this is that the purpose of the paper is not to describe what you have done, but to inform readers of the successful outcome or significant results, and to convince readers of the validity of those conclusions.

Likewise, do not dwell on details of the implementation or the experiments except insofar as they contribute to your main point. This is a particularly important piece of advice for software documentation, where you need to focus on the software's benefits to the user, and how to use it, rather than how you implemented it. However, it holds for technical papers as well — and remember that readers expect different things from the two types of writing!

The audience is interested in what worked, and why, so start with that. If you discuss approaches that were not successful, do so briefly, and typically only after you have discussed the successful approach. Furthermore, the discussion should focus on differences from the successful technique, and if at all possible should provide general rules or lessons learned that will yield insight and help others to avoid such blind alleys in the future.

Whenever you introduce a strawman or an inferior approach, say so upfront. A reader will (and should) assume that whatever you write in a paper is something you believe or advocate, unless very clearly marked otherwise. A paper should never first detail a technique, then (without forewarning) indicate that the technique is flawed and proceed to discuss another technique. Such surprises confuse and irritate readers. This mistake is often called “leading the reader down the garden path”.

When there are multiple possible approaches to a problem, it is preferable to give the best or successful one first. Oftentimes it is not even necessary to discuss the alternatives. If you do, they should generally come after, not before, the successful one. Your paper should give the most important details first, and the less important ones afterward. Its main line of argument should flow coherently rather than being interrupted. It can be acceptable to state an imperfect solution first (with a clear indication that it is imperfect) if it is a simpler version of the full solution, and the full solution is a direct modification of the simpler one. Less commonly, it can be acceptable to state an imperfect solution first if it is an obvious solution that every reader will assume is adequate; but use care with this rationalization, since you are usually wrong that every reader will jump to the given conclusion.

A paper should communicate the main ideas of your research (such as the techniques and results) early and clearly. Then, the body of the paper can expand on these points; a reader who understands the structure and big ideas can better appreciate the details. Another way of saying this is that you should give away the punchline. A technical paper is not a joke or a mystery novel. The reader should not encounter any surprises, only deeper explanations of ideas that have already been introduced. It's particularly irritating when an abstract or introduction states, “We evaluated the relationship between baldness and beekeeping”, with the key results buried pages later. A better abstract would say, “Male beekeepers are 25% more likely to be bald (p=.04), but there is no statistically significant correlation for female beekeepers.”

The same advice applies at the level of sections and paragraphs. It is a bad approach to start with a mass of details and only at the end tell the reader what the main point was or how the details related to one another. Instead, state the point first and then support it. The reader is more likely to appreciate which evidence is important and why, and is less likely to become confused or frustrated.

For each section of the paper, consider writing a mini-introduction that says what its organization is, what is in each subpart, and how the parts relate to one another. For the whole paper, this is probably a paragraph. For a section or sub-section, it can be as short as a sentence. This may feel redundant to you (the author), but readers haven't spent as much time with the paper's structure as you have, so they will truly appreciate these signposts that orient them within your text.

Some people like to write the abstract, and often also the introduction, last. Doing so makes them easier to write, because the rest of the paper is already complete and can just be described. However, I prefer to write these sections early in the process (and then revise them as needed), because they frame the paper. If you know the paper's organization and outlook, then writing the front matter will take little effort. If you don't, then it is an excellent use of your time to determine that information by writing the front matter. To write the body of the paper without knowing its broad outlines will take more time in the long run. Another way of putting this is that writing the paper first will make writing the abstract faster, and writing the abstract first will make writing the paper faster. There is a lot more paper than abstract, so it makes sense to start with that and to clarify the point of the paper early on.

It is a very common error to dive into the technical approach or the implementation details without first appropriately framing the problem and providing motivation and background. Readers need to understand what the task is before they are convinced that they should pay attention to what you are saying about it. You should first say what the problem or goal is, and — even when presenting an algorithm — first state what the output is and probably the key idea, before discussing steps. Avoid providing information that isn't useful to readers/users. It just distracts from the important content.

Some writers are overwhelmed by the emptiness of a blank page or editor buffer, and they have trouble getting started with their writing. Don't worry! Here are some tricks to help you get started. Once you have begun, you will find it relatively easier to revise your notes or first draft. The key idea is to write something , and you can improve it later.

Start verbally . Explain what the paper needs to say to another person. After the conversation is over, write down what you just said, focusing on the main points rather than every word you spoke. Many people find it easier to speak than to write. Furthermore, getting feedback and giving clarifications will help you discover problems with your argument, explanation, or word choice.

Outline . You may not be ready to write full English paragraphs, but you can decide which sections your paper will have and give them descriptive titles. Once you have decided on the section structure, you can write a little outline of each section, which indicates the subsection titles. Now, expand that into a topic sentence for each paragraph. At this point, since you know the exact topic of each paragraph, you will find the paragraph easy to write.

Stream-of-consciousness notes . Write down everything that you know, in no particular order and with no particular formatting. Afterward, organize what you wrote thematically, bringing related points together. Eventually, convert it into an outline and proceed as above. While writing notes, use phrases/keywords, not complete sentences. The phrases are quicker to write and less likely to derail your brainstorming; they are easier to organize; and you will feel less attached to them and more willing to delete them.

Divide and conquer . Rather than trying to write your entire document, choose some specific part, and write just that part. Then, move on to another part.

Re-use . Find other text that you have written on the topic and start from that. An excellent source is your progress reports — you are writing them, aren't you? This can remind you what was hard or interesting, or of points that you might otherwise forget to make. You will rarely want to re-use text verbatim, both because you can probably convey the point better now, and also because writing for different audiences or in different contexts requires a different argument or phrasing. For example, a technical paper and a technical talk have similar aims but rather different forms.

You must be willing to delete and/or rewrite your notes and early drafts. If you wrote something once, you can write it again (probably better!). Early on, the point is to organize your ideas, not to create finished sentences.

Be brief. Make every word count. If a word does not support your point, cut it out, because excess verbiage and fluff only make it harder for the reader to appreciate your message. Use shorter and more direct phrases wherever possible.

Make your writing crisp and to the point. Eliminate any text that does not support your point. Here is one way you might go about this; it is time-consuming but extremely effective. First, examine each section of the paper in turn and ask what role it serves and whether it contributes to the paper's main point. If not, delete it. Next, within each section, examine each paragraph. Ask whether that paragraph has a single point. If not, rewrite the paragraph. Also ask whether that point contributes to the goals of the section. If not, then delete the paragraph. Next, within each paragraph, examine each sentence. If it does not make a single, clear point that strengthens the paragraph, delete or rewrite it. Finally, within each sentence, examine each word, and delete or replace those that do not strengthen their point. You will need to repeat this entire process multiple times, keeping a fresh perspective on the paper.

Some people find it easier to follow this approach bottom-up, first cutting/rewriting words, then sentences, etc.

Passive voice has no place in technical writing. It obscures who the actor was, what caused it, and when it happened. Use active voice and simple, clear, direct phrasing.

First person is rarely appropriate in technical writing.

  • First person is appropriate when describing something that the author of the paper did manually. Recall that your paper should not be couched as a narrative.
  • Do not use “we” to mean “the author and the reader” or “the paper”. For example, do not write “In this section, we ...”.
  • Do not use “we” to describe the operation of a program or system. “We compute a graph” makes it sound like the authors did it by hand. As a related point, do not anthropomorphize computers: they hate it. Anthropomorphism, such as “the program thinks that ...”, is unclear and vague.

Avoid puffery, self-congratulation, superlatives, and subjective or value judgments: give the objective facts and let the reader judge. Avoid vague terms like “sizable” and “significant” (which are also subjective). Don't overuse the word “novel”. When I see a paper that is full of these, my rule of thumb is that the paper is trying too hard to cover up for scanty evidence.

Do not use words like “clearly”, “easily”, “obviously”, and “trivially”, as in “Obviously, this Taylor series sums to π.” If the point is really obvious, then you are just wasting words by pointing it out. And if the point is not obvious to readers who are not intimately familiar with the subject matter the way you are, then you are offending readers by insulting their intelligence, and you are demonstrating your own inability to communicate the intuition.

Prefer singular to plural number. In “sequences induce graphs”, it is not clear whether the two collections are in one-to-one correspondence, or the set of sequences collectively induces a set of graphs; “each sequence induces a graph” avoids this confusion. Likewise, in “graphs might contain paths”, it is unclear whether a given graph might contain multiple paths, or might contain at most one path.

When describing an experiment or some other event or action that occurred in the past, use past tense . For example, the methodology section might say “We ran the program”. It would be ungrammatical and confusing to use present tense, as in “We run the program”. Present tense is for ongoing events (“I write this letter to inform you...”) or regular events (“I brush my teeth each day”), but not past events (“Yesterday, I eat dinner with my family”). It is also correct to say “Our methodology was to run the program”, where you use past tense “was” and the infinitive “to run”.

When describing the paper itself, use present tense . “This paper shows that ...”. The reason for this is that the reader is experiencing the paper in real time.

Avoid gratuitous use of the future tense “will ...”, as in, “switching the red and green wires will cause the bomb to explode”. It is unclear when the action will occur. If it is an immediate effect, use the shorter and more direct “switching the red and green wires causes the bomb to explode”.

Use “previous work” instead of “existing work”. Your work exists, so “existing work” would refer to it as well.

In a list with 3 or more elements list, put a serial comma between each of the items (including the last two). As a simple example of why, consider this 3-element grocery list written without the clarifying last comma: “milk, macaroni and cheese and crackers”. It's not clear whether that means { milk, macaroni and cheese, crackers } or { milk, macaroni, cheese and crackers }. As another example, “I would like to thank my parents, Rene Descartes and Ayn Rand,” suggests rather unusual parentage, whereas “I would like to thank my parents, Rene Descartes, and Ayn Rand,” shows a debt to four people. I've seen real examples that were even more confusing than these.

In English, compound adjectives are hyphenated (except those whose first words end with “ly”, in some style guides) but compound nouns are not. Consider “the semantics provide name protection” versus “the name-protection semantics”.

Prefer unambiguous words to ambiguous ones. Do not use “as” or “since” to mean “because”. Do not use “if” to mean “whether”.

Use quotations sparingly. A clear paraphrase of the points that are relevant to your own work (along with a proper citation) is usually better than a long quotation from a previous publication.

Avoid third-person pronouns when you can. The old standard was “he”, which is masculine chauvinist. The new standard is “he or she”, which can be viewed as heteronormative and which some people find clumsy. An emerging standard is “they” as a first-person singular pronoun, which is inclusive but grammatically incorrect and confusing (see comments above about singular vs. plural number).

Some of the suggestions in this document are about good writing, and that might seem secondary to the research. But writing more clearly will help you think more clearly and often reveals flaws (or ideas!) that had previously been invisible even to you. Furthermore, if your writing is not good, then either readers will not be able to comprehend your good ideas, or readers will be (rightly) suspicious of your technical work. If you do not (or cannot) write well, why should readers believe you were any more careful in the research itself? The writing reflects on you, so make it reflect well.

Use figures! Different people learn in different ways, so you should complement a textual or mathematical presentation with a graphical one. Even for people whose primary learning modality is textual, another presentation of the ideas can clarify, fill gaps, or enable the reader to verify his or her understanding. Figures can also help to illustrate concepts, draw a skimming reader into the text (or at least communicate a key idea to that reader). Figures make the paper more visually appealing.

It is extremely helpful to give an example to clarify your ideas: this can make concrete in the reader's mind what your technique does (and why it is hard or interesting). A running example used throughout the paper is also helpful in illustrating how your algorithm works, and a single example permits you to amortize the time and space spent explaining the example (and the reader's time in appreciating it). It's harder to find or create a single example that you re-use throughout the paper, but it is worth it.

A figure should stand on its own, containing all the information that is necessary to understand it. Good captions contain multiple sentences; the caption provides context and explanation. For examples of good, informative captions, see the print editions of magazines such as Scientific American and American Scientist . The caption should state what the figure illustrates or what conclusion a reader should draw from it. Don't write an obvious description of what the figure is, such as "Code example". Never write a caption like “The Foobar technique”; the caption should also say what the Foobar technique is, what it is good for, or how it works. The caption may also need to explain the meaning of columns in a table or of symbols in a figure. However, it's even better to put that information in the figure proper; for example, use labels or a legend. When the body of your paper contains information that belongs in a caption, there are several negative effects. The reader is forced to hunt all over the paper in order to understand the figure. The flow of the writing is interrupted with details that are relevant only when one is looking at the figure. The figures become ineffective at drawing in a reader who is scanning the paper — an important constituency that you should cater to!

As with naming , use pictorial elements consistently. Only use two different types of arrows (or boxes, shading, etc.) when they denote distinct concepts; do not introduce inconsistency just because it pleases your personal aesthetic sense. Almost any diagram with multiple types of elements requires a legend (either explicitly in the diagram, or in the caption) to explain what each one means; and so do many diagrams with just one type of element, to explain what it means.

Some writers label all the types of figures differently — some as “figure”, others as “table” or “graph” or “picture”. This differentiation has no benefits, but it does have a drawback: it is very hard for a reader to find “table 3”, which might appear after “figure 7” but before “freehand drawing 1”. You should simply call them all figures and number them sequentially. The body of each figure might be a table, a graph, a diagram, a screenshot, or any other content.

Put figures at the top of the page, not in the middle or bottom. If a numbered, captioned figure appears in the middle or at the bottom of a page, it is harder for readers to find the next paragraph of text while reading, and harder to find the figure from a reference to it.

Avoid bitmaps, which are hard to read. Export figures from your drawing program in a vector graphics format. If you must use a bitmap (which is only appropriate for screenshots of a tool), then produce them at very high resolution. Use the biggest-resolution screen you can, and magnify the portion you will capture.

Don't waste text in the paper (and tax the reader's patience) regurgitating information that is expressed more precisely and concisely in a figure. For example, the text should not repeat the numbers from a table or graph. Text in the paper should add insight or explanations, or summarize the conclusions to be drawn from the data in the figure.

Your code examples should either be real code, or should be close to real code. Never use synthetic examples such as procedures or variables named foo or bar . Made-up examples are much harder for readers to understand and to build intuition regarding. Furthermore, they give the reader the impression that your technique is not applicable in practice — you couldn't find any real examples to illustrate it, so you had to make something up.

Any boldface or other highlighting should be used to indicate the most important parts of a text. In code snippets, it should never be used to highlight syntactic elements such as “public” or “int”, because that is not the part to which you want to draw the reader's eye. (Even if your IDE happens to do that, it isn't appropriate for a paper.) For example, it would be acceptable to use boldface to indicate the names of procedures (helping the reader find them), but not their return types.

Give each concept in your paper a descriptive name to make it more memorable to readers. Never use terms like “approach 1”, “approach 2”, or “our approach”, and avoid acronyms when possible. If you can't think of a good name, then quite likely you don't really understand the concept. Think harder about it to determine its most important or salient features.

It is better to name a technique (or a paper section, etc.) based on what it does rather than how it does it.

Use terms consistently and precisely. Avoid “elegant variation”, which uses different terms for the same concept to avoid boredom on the part of the reader or to emphasize different aspects of the concept. While elegant variation may be appropriate in poems, novels, and some essays, it is not acceptable in technical writing, where you should clearly define terms when they are first introduced, then use them consistently. If you switch wording gratuitously, you will confuse the reader and muddle your point. A reader of a technical paper expects that use of a different term flags a different meaning, and will wonder what subtle difference you are trying to highlight. Thus, don't confuse the reader by substituting “program”, “library”, “component”, “system”, and “artifact”, nor by conflating “technique”, “idea”, “method” and “approach”, nor by switching among “program”, “code”, and “source”. Choose the best word for the concept, and stick with it.

Do not use a single term to refer to multiple concepts. If you use the term “technique” for every last idea that you introduce in your paper, then readers will become confused. This is a place that use of synonyms to distinguish concepts that are unrelated (from the point of view of your paper) is acceptable. For instance, you might always use “phase” when describing an algorithm but “step” when describing how a user uses a tool.

When you present a list, be consistent in how you introduce each element, and either use special formatting to make them stand out or else state the size of the list. Don't use, “There are several reasons I am smart. I am intelligent. Second, I am bright. Also, I am clever. Finally, I am brilliant.” Instead, use “There are four reasons I am smart. First, I am intelligent. Second, I am bright. Third, I am clever. Fourth, I am brilliant.” Especially when the points are longer, this makes the argument much easier to follow. Some people worry that such consistency and repetition is pedantic or stilted, or it makes the writing hard to follow. There is no need for such concerns: none of these is the case. It's more important to make your argument clear than to achieve “elegant variation” at the expense of clarity.

Choose good names not only for the concepts that you present in your paper, but for the document source file. Don't name the file after the conference to which you are submitting (the paper might be rejected) or the year. Even if the paper is accepted, such a name won't tell you what the paper is about when you look over your files in later years. Instead, give the paper or its folder/directory a name that reflects its content. Another benefit is that this will also lead you to think about the paper in terms of its content and contributions.

Here is a piece of advice that is specific to computing: do not use the vague, nontechnical term “bug”. Instead, use one of the standard terms fault, error, or failure. A fault is an underlying defect in a system, introduced by a human. A failure is a user-visible manifestation of the fault or defect. In other circumstances, “bug report” may be more appropriate than “bug”.

Digits of precision:

  • Don't report more digits of precision than the measurement process reliably and reproducibly produces. The 3rd or 4th digit of precision is rarely accurate and generalizable; if you don't have confidence that it is both repeatable and generalizable to new experiments, omit it. Another way to say this is that if you are not confident that a different set of experiments would produce all the same digits, then don't report so much precision.
  • Don't report more digits of precision than needed to convey your message. If the difference between 4.13 and 4 will not make a difference in convincing readers, then don't report the extra digits. Reporting extra digits can distract readers from the larger trends and the big picture. Including an inappropriate number of digits of precision can cast suspicion on all of your results, by giving readers the impression that you are statistically naive.
  • Use a consistent number of digits of precision. If the measured data are 1.23, 45.67, and 891.23, for example, you might report them as 1.23, 45.7, and 891, or as 1.2, 46, and 890, or as 1, 50, and 900. (An exception is when data are known to sum to a particular value; I would report 93% and 7% rather than either 93% and 7.4% or 90% and 7%. Often it's appropriate to report percentages as whole numbers rather than using the same precision.)
  • If you do any computations such as ratios, your computations should internally use the full precision of your actual measurements, even though your paper reports only a limited number of digits of precision.
  • If a measurement is exact, such as a count of items, then it can be acceptable to give the entire number even if it has many digits; by contrast, timings and other inexact measurements should always be reported with a limited number of digits of precision.

Do not confuse relative and absolute measurements. For instance, suppose your medicine cures 30% of patients, and the placebo cures 25% of patients. You could report that your medicine's cure rate is .3, the placebo's cure rate is .25, and your medicine's cure rate is either .05 greater or 20% greater. (Other correct, but less good, ways to say the same thing are that it cures 20% more, 120% as many, or 1.2 times as many patients.) It would be inaccurate to state that your medicine cures 5% more patients or your medicine cures 120% more patients. Just as you need to correctly use “120% more” versus “120% as many”, you need to correctly use “3 times faster than” versus “3 times as fast as”. A related, also common, confusion is between “3 times faster than and 3 times as fast as”. And, “2 times fewer” makes absolutely no sense. I would avoid these terms entirely. “Half as many” is a much better substitute for “2 times fewer”.

Given the great ease of misunderstanding what a percentage means or what its denominator is, I try to avoid percentages and focus on fractions whenever possible, especially for base measurements. For comparisons between techniques, percentages can be acceptable. Avoid presenting two different measurements that are both percentages but have different denominators.

Your paper probably includes tables, bibliographies, or other content that is generated from external data. Your paper may also be written in a text formatting language such as LaTeX. In each of these cases, it is necessary to run some external command to create some of the content or to create the final PDF.

All of the steps to create your final paper should be clearly documented — say, in comments or in a notes file that you maintain with the paper. Preferably, they should be automated so that you only have to run one command that collects all the data, creates the tables, and generates the final PDF.

If you document and automate these steps, then you can easily regenerate the paper when needed. This is useful if you re-run experiments or analysis, or if you need to defend your results against a criticism by other researchers. If you leave some steps manual, then you or your colleagues are highly likely to make a mistake (leading to a scientific error) or to be unable to reproduce your results later.

One good way to automate these tasks is by writing a program or creating a script for a build system such as Ant, Gradle, Make, Maven, etc.

A related work section should not only explain what research others have done, but in each case should compare and contrast that to your work and also to other related work. After reading your related work section, a reader should understand the key idea and contribution of each significant piece of related work, how they fit together (what are the common themes or approaches in the research community?), and how your work differs. Don't write a related work section that is just a list of other papers, with a sentence about each one that was lifted from its abstract, and without any critical analysis nor deep comparison to other work.

Unless your approach is a small variation on another technique, it is usually best to defer the related work to the end of the paper. When it comes first, it gives readers the impression that your work is rather derivative. (If this is true, it is your responsibility to convey that clearly; if it is not true, then it's misleading to intimate it.) You need to ensure that readers understand your technique in its entirety, and also understand its relationship to other work; different orders can work in different circumstances.

Just as you should generally explain your technique first, and later show relationships with other work, it is also usually more effective to defer a detailed discussion of limitations to a later section rather than the main description of your technique. You should be straightforward and honest about the limitations, of course (do mention them early on, even if you don't detail them then), but don't destroy the coherence of your narrative or sour the reader on your technique.

Get feedback ! Finish your paper well in advance, so that you can improve the writing. Even re-reading your own text after being away from it can show you things that you didn't notice. An outside reader can tell you even more.

When readers misunderstand the paper, that is always at least partly the author's fault! Even if you think the readers have missed the point, you will learn how your work can be misinterpreted, and eliminating those ambiguities will improve the paper.

Be considerate to your reviewers, who are spending their time to help you. Here are several ways to do that.

As with submission to conferences, don't waste anyone's time if there are major flaws. Only ask someone to read (a part of) your paper when you think you will learn something new, because you are not aware of serious problems. If only parts are ready, it is best to indicate this in the paper itself (e.g., a TODO comment that the reader will see or a hand-written annotation on a hardcopy) rather than verbally or in email that can get forgotten or separated from the paper.

Sometimes you want to tell a colleague who is giving you feedback that some sections of your draft are not ready to be read, or to focus on particular aspects of the document. You should write such directions in the paper, not just in email or verbally. You will then update them as you update the paper, and all relevant information is collected together. By contrast, it's asking for trouble to make your colleague keep track of information that is in multiple places.

It is most effective to get feedback sequentially rather than in parallel. Rather than asking 3 people to read the same version of your paper, ask one person to read the paper, then make corrections before asking the next person to read it, and so on. This prevents you from getting the same comments repeatedly — subsequent readers can give you new feedback rather than repeating what you already knew, and you'll get feedback on something that is closer to the final version. If you ask multiple reviewers at once, you are de-valuing their time — you are indicating that you don't mind if they waste their time saying something you already know. You might ask multiple reviewers if you are not confident of their judgment or if you are very confident the paper already is in good shape, in which case there are unlikely to be major issues that every reviewer stumbles over.

It usually best not to email the document, but to provide a location from which reviewers can obtain the latest version of the paper, such as a version control repository or a URL you will update. That way, you won't clutter inboxes with many revisions, and readers can always get the most recent copy.

Be generous with your time when colleagues need comments on their papers: you will help them, you will learn what to emulate or avoid, and they will be more willing to review your writing.

Some of your best feedback will be from yourself, especially as you get more thoughtful and introspective about your writing. To take advantage of this, start writing early. One good way to do this is to write a periodic progress report that describes your successes and failures. The progress report will give you practice writing about your work, oftentimes trying out new explanations.

Whereas you should start writing as early as possible, you don't need to put that writing in the form of a technical paper right away. In fact, it's usually best to outline the technical paper, and get feedback on that, before you start to fill in the sections with text. (You might think that you can copy existing text into the paper, but it usually works out better to write the information anew. With your knowledge of the overall structure, goals, and audience, you will be able to do a much better job that fits with the paper's narrative.) When outlining, I like to start with one sentence about the paper; then write one sentence for each section of the paper; then write one sentence for each subsection; then write one sentence for each paragraph (think of this as the topic sentence); and at that point, it's remarkably easy just to flesh out the paragraphs.

You should not submit your paper too early, when it does not reflect well on you and a submission would waste the community's reviewing resources. You should not submit your paper too late, because then the community is deprived of your scientific insights. In general, you should err on the side of submitting too late rather than too early.

A rule of thumb is to submit only if you are proud for the world to associate your name with the work, in its current form . If you know of significant criticisms that reviewers might raise, then don't submit the paper.

Submitting your paper prematurely has many negative consequences.

  • You will waste the time of hard-working reviewers, who will give you feedback that you could have obtained in other ways.
  • You will get a reputation for shoddy work.
  • You will make the paper less likely to be accepted in the future. Oftentimes the same reviewers may serve two different venues. Reviewing a paper again puts a reviewer in a negative state of mind. I have frequently heard reviewers say, “I read an earlier version of this paper, it was a bad paper, and this version is similar.” (This is unethical because reviewers are not supposed to talk about papers they have reviewed, but nonetheless it is very common.) Now the paper will likely be rejected again, and the whole committee gets a bad impression of you. A reviewer who has read a previous version of the paper may read the resubmission less carefully or make assumptions based on a previous version. To sum up: it's harder to get a given paper accepted on its second submission, than it would have been to get the identical paper accepted on its first submission.

Here are some bad reasons to submit a paper.

It's true that the feedback from reviewers is extraordinarily valuable to you and will help you improve the paper. However, you should get feedback from other scientists (your friends and colleagues) before submitting for publication.

Those are true facts, and some people do “salami-slice” their research into as many papers as possible — such papers are called a “least publishable unit”. However, doing so leads to less impact than publishing fewer papers, each one with more content. If a paper contains few contributions, it is less likely to make a big impression, because it is less exciting. In addition, readers won't enjoy reading many pages to learn just a few facts.

Note: This point refers to taking a single research idea or theme and splitting it into multiple publications. When there are multiple distinct research contributions, it can be appropriate to describe them in different papers.

The reviewing process can be frustrating, because it contains a great deal of randomness: the same paper would be rejected by some reviewers and accepted by others. However, all great papers are accepted and all bad papers are rejected. For mediocre papers, luck plays a role. Your goal should not be to write great papers, not mediocre ones. Find a way to improve your paper. Recognize the great value of reviews: they provide a valuable perspective on your work and how to improve it, even if you feel that the reviewer should have done a better job.

If you aren't excited about the paper, it is unlikely that other people will be. Furthermore, the period after submitting the paper is not a time to take a break, but an opportunity to further improve it.

After you submit a paper, don't stop working on it! You can always improve the research. For instance, you might expand the experiments, improve the implementation, or make other changes. Even if your paper is accepted, you want the accepted version to be as impressive as possible. And if the paper is rejected, you need to have a better paper to submit to the next venue.

(This section is most relevant to fields like computer science where conferences are the premier publication venue. Responding to journal reviews is different.)

Many conferences provide an author response period: the authors are shown the reviews and are given limited space (say, 500 words) to respond to the reviews, such as by clarifying misunderstandings or answering questions. The author response is sometimes called a “rebuttal”, but I don't like that term because it sets an adversarial tone.

Your paper will only be accepted if there is a champion for the paper: someone who is excited about it and will try to convince the rest of the committee to accept the paper. Your response needs to give information to your champion to overcome objections. If there isn't a champion, then the main goal of your response is to create that champion. Your response should also give information to detractors to soften their opposition.

After reading the reviews, you may be disappointed or angry. Take a break to overcome this, so that you can think clearly.

For every point in the reviews, write a brief response. Do this in email-response style, to ensure that you did not miss any points. You will want to save this for later, so it can be better to do this in the paper's version control repository, rather than in a WYSIWYG editor such as Google Docs. (This assumes you have a version control repository for the paper, which you should!) Much of this text won't go in your response, but it is essential for formulating the response.

Summarize (in 5 or so bullet points, however many make sense) the key concerns of the reviewers. Your review needs to focus on the most important and substantive critiques. The authors of the paper should agree on this structure before you start to write the actual response.

Your response to each point will be one paragraph in your response. Start the paragraph with a brief heading or title about the point. Do not assume that the reviewers remember everything that was written by every reviewer, nor that they will re-read their reviews before reading your response. A little context will help them determine what you are talking about and will make the review stand on its own. This also lets you frame the issues in your own words, which may be clearer or address a more relevant point than the reviews did.

Organize your responses thematically. Group the paragraphs into sections, and have a small heading/title for each section. If a given section has just one paragraph, then you can use the paragraph heading as the section heading. Order the sections from most to least important.

This is better than organizing your response by reviewer, first addressing the comments of reviewer 1, then reviewer 2, and so forth. Downsides of by-reviewer organization include:

  • It can encourage you not to give sufficient context.
  • It does not encourage putting related information together nor important information first.
  • You want to encourage all reviewers to read the entire response, rather than encouraging them to just look at one part.
  • When multiple reviewers raised the same issue, then no matter where you address it, it's possible for a reviewer to overlook it and think you failed to address it.
  • You don't want to make glaringly obvious which issues in a review you had to ignore (for reasons of space or other reasons).
  • You don't want to make glaringly obvious that you spent much more time and space on one reviewer than another.

In general, it's best not to mention reviewer names/numbers in your response at all. Make the response be about the science, not about the people.

In your responses, admit your errors forthrightly. Don't ignore or avoid key issues, especially ones that multiple reviewers brought up.

Finally, be civil and thankful the reviewers. They have spent considerable time and energy to give you feedback (even if it doesn't seem to you that they have!), and you should be grateful and courteous in return.

If you submit technical papers, you will experience rejection. In some cases, rejection indicates that you should move on and begin a different line of research. In most cases, the reviews offer an opportunity to improve the work, and so you should be very grateful for a rejection! It is much better for your career if a good paper appears at a later date, rather than a poor paper earlier or a sequence of weak papers.

Even small flaws or omissions in an otherwise good paper may lead to rejection. This is particularly at the elite venues with small acceptance rates, where you should aim your work. Referees are generally people of good will, but different referees at a conference may have different standards, so the luck of the draw in referees is a factor in acceptance.

The wrong lesson to learn from rejection is discouragement or a sense of personal failure. Many papers — even papers that later win awards — are rejected at least once. The feedback you receive, and the opportunity to return to your work, will invariably improve your results.

Don't be put off by a negative tone in the reviews. The referees are trying to help you, and the bast way to do that is to point out how your work can be improved. I often write a much longer review, with more suggestions for improvement, for papers that I like; if the paper is terrible, I may not be able to make as many concrete suggestions, or my high-level comments may make detailed comments moot.

If a reviewer didn't understand something, then the main fault almost always lies with your writing. If you blame a lazy or dumb reviewer, you are missing the opportunity to improve. Reviewers are not perfect, but they work hard to give you helpful suggestions, so you should give them the benefit of the doubt. Remember that just as it is hard to convey technical ideas in your paper (and if you are getting a rejection, that is evidence that you did not succeed!), it is hard to convey them in a review, and the review is written in a few hours rather than the weeks you spent on the paper (not to mention months or years of understanding the concepts). You should closely attend to both the explicit comments, and to underlying issues that may have led to those comments — it isn't always easy to capture every possible comment in a coherent manner. Think about how to improve your research and your writing, even beyond the explicit suggestions in the review — the prime responsibility for your research and writing belongs with you.

Norman Ramsey's nice Teach Technical Writing in Two Hours per Week espouses a similar approach to mine: by focusing on clarity in your writing, you will inevitably gain clarity in your thinking.

Don't bother to read both the student and instructor manuals — the student one is a subset of the instructor one. You can get much of the benefit from just one part, his excellent “principles and practices of successful writers”:

  • Correctness. Write correct English, but know that you have more latitude than your high-school English teachers may have given you.
  • Consistent names. Refer to each significant character (algorithm, concept, language) using the same word everywhere. Give a significant new character a proper name.
  • Singular. To distinguish one-to-one relationships from n-to-m relationships, refer to each item in the singular, not the plural.
  • Subjects and verbs. Put your important characters in subjects, and join each subject to a verb that expresses a significant action.
  • Information flow. In each sentence, move your reader from familiar information to new information.
  • Emphasis. For material you want to carry weight or be remembered, use the end of a sentence.
  • Coherence. In a coherent passage, choose subjects that refer to a consistent set of related concepts.
  • Parallel structure. Order your text so your reader can easily see how related concepts are different and how they are similar.
  • Abstract. In an abstract, don't enumerate a list of topics covered; instead, convey the essential information found in your paper.
  • Write in brief daily sessions. Ignore the common myth that successful writing requires large, uninterrupted blocks of time — instead, practice writing in brief, daily sessions.
  • Focus on the process, not the product. Don't worry about the size or quality of your output; instead, reward yourself for the consistency and regularity of your input.
  • Prewrite. Don't be afraid to think before you write, or even jot down notes, diagrams, and so on.
  • Use index cards. Use them to plan a draft or to organize or reorganize a large unit like a section or chapter.
  • Write a Shitty First Draft™. Value a first draft not because it's great but because it's there.
  • Don't worry about page limits. Write the paper you want, then cut it down to size.
  • Cut. Plan a revision session in which your only goal is to cut.
  • Norman Ramsey's advice , excerpted immediately above .
  • “Hints on writing an M.Eng. thesis” , by Jeremy Nimmer
  • my notes on reviewing a technical paper , which indicate how to recognize — and thus produce — quality work
  • my notes on choosing a venue for publication
  • my notes on giving a technical talk : a talk has the same goal as a paper, namely to convey technical ideas
  • my notes on making a technical poster
  • Ronald B. Standler's advice on technical writing
  • Dave Patterson's Writing Advice
  • Advice on SIGPLAN conference submissions (at bottom of page)
  • The Elements of Style , William Strunk Jr. and E. B. White, is classic book on improving your writing. It focuses at a low level, on English usage.
  • Style: Toward Clarity and Grace , by Joseph M. Williams, is another general-purpose writing guide, with a somewhat higher-level focus than that of Strunk & White.
  • The Sense of Style: The Thinking Person's Guide to Writing in the 21st Century , by Steven Pinker, is an excellent guide to writing. It gives reasons (from psychology and other scientific fields) for its advice, making it more authoritative than someone's opinion.

Back to Advice compiled by Michael Ernst .

Training videos   |   Faqs

Ref-n-Write: Scientific Research Paper Writing Software

Technical Terms, Notations, and Scientific Jargon in Research Papers

In this blog, we will teach you how to use specialized terminology in your research papers with some practical examples. Using scientific jargon and technical vocabulary has two advantages, number one, you are using the language used by your peers in your field, and number two, it makes your text significantly shorter.

1. Scientific Jargon

Make sure you use scientific jargon that is relevant to your field in your text. Scientific jargon refers to technical terms specific to your discipline. Here is an example. In the example below, the same statement has been written in both everyday language and using scientific jargon. “The X-ray of the breast” in the first statement has been replaced by “Mammography” in the second statement. “A needle to extract breast tissue” in the first statement has been replaced by “Biopsy” in the second statement, and “Dangerous cancer” in the first statement has been replaced by “malignant tumor” in the second statement.

✖ Sentence written in everyday language The X-ray of the breast is used to find cancers. Then, a needle is inserted to extract breast tissue to find out if it is a dangerous cancer. ✔ Sentence written using specialized terminologies Mammography is used to detect cancers. Then, a Biopsy is performed to confirm if it is a malignant tumor.

2. Abbreviations and Acronyms

Try to use acronyms and abbreviations for long method names. Abbreviations and acronyms are a great way to make your writing concise and save time. Define the acronyms and abbreviations during their first occurrence then use the short form in the rest of the text. The common practice is to put the acronym and abbreviations in parentheses after the full term.

Look at the example below. We have defined the abbreviation for Digital breast tomosynthesis as “DBT” at the first occurrence and then started using the abbreviated form in the rest of the text.

Author defines ‘DBT’ at the first occurance, and uses the abbreviated form in the rest of the text Digital Breast Tomosynthesis (DBT) has been recently introduced to overcome some of the limitations of traditional mammography. DBT has been adopted in many countries for routine screening of breast cancer.

3. Notations and Technical Definitions

The introduction paragraph is the best place to introduce notations and technical definitions. This can include symbols, characters, and terminologies. Notations and definitions can help you to express very large names and numbers in a form that is easy to understand to your readers. Following are some examples.

✔ Examples of notations introduced in the introduction paragraph of a research paper [1] We introduce some notations which applies throughout the rest of the paper. Let ‘X’ be a collection of points and ‘Y’ be a ….  [2] Throughout the paper we will signify variable names with upper-case letters. [3] We first introduce some notation. Let ‘i’ denote ….

If you have any questions, please drop a comment below, and we will answer as soon as possible. We also recommend you to refer to our other blogs on  academic writing tools ,   academic writing resources ,  academic writing phrases and research paper examples which are relevant to the topic discussed in this blog. 

Similar Posts

How to Write a Research Paper? A Beginners Guide with Useful Academic Phrases

How to Write a Research Paper? A Beginners Guide with Useful Academic Phrases

This blog explains how to write a research paper and provides writing ideas in the form of academic phrases.

Paraphrasing – Techniques for Rephrasing, Rewording, and Rewriting.

Paraphrasing – Techniques for Rephrasing, Rewording, and Rewriting.

In this blog, we explain good paraphrasing techniques. We also discuss how paraphrasing tools and plagiarism checkers can be used to avoid academic misconduct.

Discussion Section Examples and Writing Tips

Discussion Section Examples and Writing Tips

In this blog, we will go through many discussion examples and understand how to write a great discussion for your research paper.

Formulating Strong Research Questions: Examples and Writing Tips

Formulating Strong Research Questions: Examples and Writing Tips

In this blog, we will go through many research question examples and understand how to construct a strong research question for your paper.

How to Reuse a Method from a Previous Paper?

How to Reuse a Method from a Previous Paper?

In this blog, we will look at how to replicate someone’s methodology in your paper.

How to Create a Research Paper Outline?

How to Create a Research Paper Outline?

In this blog we will see how to create a research paper outline and start writing your research paper.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • 10 Share Facebook
  • 0 Share Twitter
  • 0 Share LinkedIn
  • 0 Share Email

technical term for research paper

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Literature Review

Literature Review – Types Writing Guide and...

How to Publish a Research Paper

How to Publish a Research Paper – Step by Step...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Problem statement

Problem Statement – Writing Guide, Examples and...

Evaluating Research

Evaluating Research – Process, Examples and...

Basics of scientific and technical writing

  • Career Central
  • Published: 01 March 2021
  • Volume 46 , pages 284–286, ( 2021 )

Cite this article

technical term for research paper

  • Morteza Monavarian 1 , 2  

5992 Accesses

3 Citations

6 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

Introduction to scientific/technical writing

Scientific/technical writing is an essential part of research. The outcome of a research activity should be shared with others in the form of scientific paper publications; some ideas require a patent to reserve the implementation rights; and almost any research activity requires a funding source, for which a grant proposal is necessary. Therefore, it is crucial to know the differences among writing papers, patents, and grant proposals and how to prepare them in a research environment ( Figure 1 ).

figure 1

Three major types of scientific/technical writing covered in the three-part series.

The publication of papers is a standard way to share knowledge and transfer methods in scientific communities, thus a pivotal part of any research activity, especially in an academic environment. In industry, where financial profit is a key factor, patents are possibly more favorable.

Types of paper publications

There are different types of paper publications, depending on the content, audience, purpose, length, and scope: original research, review articles, invited articles, conference proceedings, comments/errata, and press releases ( Figure 2 ).

Original research articles may be published in journals or conference proceedings (or preprints in arXiv) and target specific audiences within a field of research. Journal research papers require peer review that typically involves an editor and two reviewers. For conference proceedings, there is usually no direct peer-review process, but the work has to be presented in the corresponding conference to be eligible for publication.

In contrast to original research articles, which are written on special topics within a field of research, review articles normally cover an overview of research and tend to be longer. Review articles do not necessarily reflect on novel data or ideas and could be similar to a book chapter. However, unlike review articles, book chapters or books are usually written when the target field of research is fully established. In a review paper, figures are typically not original and reprinted from other publications, for which a copyright permission from the original publishing journal is required.

Invited articles are written in response to an invitation by a journal editor or a conference organizer in a specific field of research or for a special issue. An invited article could be a review article or original research. Invited articles are normally written by peers or researchers with significant contributions to a field of research.

Other items published include comments or errata. The purpose of a comment on a published article is to bring points of criticism to the attention of the readers as well as the authors of the original article. The comments can be published in the same journal as the original paper. Errata correct mistakes in an article after publication.

Finally, press releases target a more general audience and normally report on a review/overview of recently published research. The author of the press release is not the same as that of the original article. Unlike peer-reviewed research articles, press release articles are usually not citable.

figure 2

Six major types of paper publications.

Writing structures and styles

Different articles have different structures. A research article typically consists of a title, author list and affiliations, abstract, main body, conclusions, acknowledgments, and references.

A good title should be concise, to the point, and free of abbreviations. Author lists and affiliations include whoever has intellectually contributed to the paper (identifying at least one corresponding author and email address), with the order approved by all of the co-authors. A good abstract should give a full, but short, overview of the work with both qualitative and quantitative data summaries. An abstract should be self-contained, meaning it should not require a referral to a reference or figure. Abstracts are usually written in the present tense and have an active voice.

Unlike letters with no sections within the main body, the main body of research articles normally contains several sections (e.g., introduction, methods and approach, results, and discussions). The introduction should contain a deep literature review of the field as the basis for motivating the current work. The last paragraph of the introduction usually summarizes what to expect from the article. The following sections will demonstrate study methods, results, and discussions/interpretations of the results, including plots, tables, and figures.

Conclusions summarize the findings of the paper and may point out any future directions. The acknowledgment lists all funding support and gratitude toward anyone who helped with the work, not including those listed as co-authors. The reference section lists all references in a format described in the journal submission guidelines. Using reference management software (such as Zotero, Mendeley, BibTex) makes organizing the references less cumbersome. A good scholarly research article should have citations for almost any claims made within the main body, to ensure proper connections to the prior research in the field.

Unlike patents, papers require a deep scientific background and should be straight to the point. While patents include all aspects of the idea, papers typically have space limitations, so should therefore be concise. The data in research articles should speak for itself. The language of a research paper should be clear and simple and not include metaphors or slang.

Where to submit

The submission target depends on several factors: (1) scope of the journal, (2) length of the paper (letters versus regular length articles), (3) access (regular versus open access), and (4) impact factor (IF). The scope of the journal is probably the first thing to consider; you cannot publish a biological paper in a humanity journal. Regarding length, a letter is much shorter and usually does not have section headings. It depends on the discipline, but sometimes letters are more favorable because of the shorter publication time, preparation simplicity, and more readability (takes less time to read, which may also improve the visibility of the paper). In terms of access, you may pay publication charges to receive open access, or some journals charge publication fees upon acceptance. Open access papers could potentially get more visibility than normal publications.

IF is a specific journal parameter indicating the average number of citations per published article over a certain period of time. Paying serious attention to IF could oppose the mission of science itself, as it could mean that you judge a paper only by where it is being published and not by its intrinsic values (also called high IF syndrome).

Submission, peer-review, and decisions

Your article will enter the peer-review process upon submission. If done properly, the peer-review process not only avoids false or inconsistent data from being published (and helps science in this regard), but also improves your paper and removes any potential errors/issues or vague discussion. During submission, some journals may ask you to include/exclude reviewers. If there are researchers who may have a direct conflict with your work, you may list them as excluded reviewers. You may also suggest to include reviewers who have relevant experience.

Serving as a reviewer may help you with your own writing, as it assists in developing critical thinking. However, for the sake of science, try peer-reviewing for lesser-known journals (the high-impact journals already have many reviewers). Decisions on your article could be (1) reject: cannot be accepted to this journal; (2) referral to other journals; submit to another journal; (3) accept: accepted as is; (4) major revisions: not accepted, but could be accepted upon significant improvement (upon approval from reviewers); and (5) minor revision: accept but needs slight revisions (no need to go through a peer review again).

Copyrights and archiving

Most journals obtain copyrights from the authors before submission via a copyright transfer form. Hence, re-publishing the same data and plots in another journal is often forbidden. Also, the language of a paper should have a significant difference from an already published paper to avoid plagiarism. In the case where some content (e.g., figure or table) needs to be re-published in another paper (e.g., for review articles or thesis/dissertations), one can request a copyright permission from the original publishing journal. Also, archiving of one’s published papers in personal profile websites (e.g., Researchgate or LinkedIn) is usually forbidden, unless the paper is published as open access.

Final tips for paper publication

Read, read, read! There is probably no better way of improving writing skills than reading other articles and books.

Make illustrative and self-contained figures that can stand on their own.

Know your audience when selecting a journal. Find out which journals are normally targeted by people in your research community.

Protect yourself from high impact factor (IF) syndrome. Journals with a high IF may have very subjective decision criteria. It is sometimes more important to have your paper published than to spend a couple of years waiting for publication in a high-impact journal.

Serve as a reviewer. Get a sense of how a peer-review process feels in order to establish critical thinking. Before submitting your article, self-review.

Look forward to a constructive peer review. It definitely improves your paper (always good to have a view from different perspective).

Enjoy your publications!

Author information

Authors and affiliations.

Materials Department, University of California Santa Barbara, Santa Barbara, CA, USA

Morteza Monavarian

Solid State Lighting & Energy Electronics Center, University of California Santa Barbara, Santa Barbara, CA, USA

You can also search for this author in PubMed   Google Scholar

Additional information

This article is the first in a three-part series in MRS Bulletin that will focus on writing papers, patents, and proposals.

Rights and permissions

Reprints and permissions

About this article

Monavarian, M. Basics of scientific and technical writing. MRS Bulletin 46 , 284–286 (2021). https://doi.org/10.1557/s43577-021-00070-y

Download citation

Published : 01 March 2021

Issue Date : March 2021

DOI : https://doi.org/10.1557/s43577-021-00070-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Glossary of Key Research Terms

This glossary provides definitions of many of the terms used in the guides to conducting qualitative and quantitative research. The definitions were developed by members of the research methods seminar (E600) taught by Mike Palmquist in the 1990s and 2000s.

Citation Information

Members of the Research Methods Seminar (E600) taught by Mike Palmquist in the 1990s and 2000s. (1994-2024). Glossary of Key Terms. The WAC Clearinghouse. Colorado State University. Available at https://wac.colostate.edu/repository/writing/guides/.

Copyright Information

Copyright © 1994-2024 Colorado State University and/or this site's authors, developers, and contributors . Some material displayed on this site is used with permission.

Confusion to Clarity: Definition of Terms in a Research Paper

Explore the definition of terms in research paper to enhance your understanding of crucial scientific terminology and grow your knowledge.

' src=

Have you ever come across a research paper and found yourself scratching your head over complex synonyms and unfamiliar terms? It’s a hassle as you have to fetch a dictionary and then ruffle through it to find the meaning of the terms.

To avoid that, an exclusive section called ‘ Definition of Terms in a Research Paper ’ is introduced which contains the definitions of terms used in the paper. Let us learn more about it in this article.

What Is The “Definition Of Terms” In A Research Paper?

The definition of terms section in a research paper provides a clear and concise explanation of key concepts, variables, and terminology used throughout the study. 

In the definition of terms section, researchers typically provide precise definitions for specific technical terms, acronyms, jargon, and any other domain-specific vocabulary used in their work. This section enhances the overall quality and rigor of the research by establishing a solid foundation for communication and understanding.

Purpose Of Definition Of Terms In A Research Paper

This section aims to ensure that readers have a common understanding of the terminology employed in the research, eliminating confusion and promoting clarity. The definitions provided serve as a reference point for readers, enabling them to comprehend the context and scope of the study. It serves several important purposes:

  • Enhancing clarity
  • Establishing a shared language
  • Providing a reference point
  • Setting the scope and context
  • Ensuring consistency

Benefits Of Having A Definition Of Terms In A Research Paper

Having a definition of terms section in a research paper offers several benefits that contribute to the overall quality and effectiveness of the study. These benefits include:

Clarity And Comprehension

Clear definitions enable readers to understand the specific meanings of key terms, concepts, and variables used in the research. This promotes clarity and enhances comprehension, ensuring that readers can follow the study’s arguments, methods, and findings more easily.

Consistency And Precision

Definitions provide a consistent framework for the use of terminology throughout the research paper. By clearly defining terms, researchers establish a standard vocabulary, reducing ambiguity and potential misunderstandings. This precision enhances the accuracy and reliability of the study’s findings.

Common Understanding

The definition of terms section helps establish a shared understanding among readers, including those from different disciplines or with varying levels of familiarity with the subject matter. It ensures that readers approach the research with a common knowledge base, facilitating effective communication and interpretation of the results.

Avoiding Misinterpretation

Without clear definitions, readers may interpret terms and concepts differently, leading to misinterpretation of the research findings. By providing explicit definitions, researchers minimize the risk of misunderstandings and ensure that readers grasp the intended meaning of the terminology used in the study.

Accessibility For Diverse Audiences

Research papers are often read by a wide range of individuals, including researchers, students, policymakers, and professionals. Having a definition of terms in a research paper helps the diverse audience understand the concepts better and make appropriate decisions. 

Types Of Definitions

There are several types of definitions that researchers can employ in a research paper, depending on the context and nature of the study. Here are some common types of definitions:

Lexical Definitions

Lexical definitions provide the dictionary or commonly accepted meaning of a term. They offer a concise and widely recognized explanation of a word or concept. Lexical definitions are useful for establishing a baseline understanding of a term, especially when dealing with everyday language or non-technical terms.

Operational Definitions

Operational definitions define a term or concept about how it is measured or observed in the study. These definitions specify the procedures, instruments, or criteria used to operationalize an abstract or theoretical concept. Operational definitions help ensure clarity and consistency in data collection and measurement.

Conceptual Definitions

Conceptual definitions provide an abstract or theoretical understanding of a term or concept within a specific research context. They often involve a more detailed and nuanced explanation, exploring the underlying principles, theories, or models that inform the concept. Conceptual definitions are useful for establishing a theoretical framework and promoting deeper understanding.

Descriptive Definitions

Descriptive definitions describe a term or concept by providing characteristics, features, or attributes associated with it. These definitions focus on outlining the essential qualities or elements that define the term. Descriptive definitions help readers grasp the nature and scope of a concept by painting a detailed picture.

Theoretical Definitions

Theoretical definitions explain a term or concept based on established theories or conceptual frameworks. They situate the concept within a broader theoretical context, connecting it to relevant literature and existing knowledge. Theoretical definitions help researchers establish the theoretical underpinnings of their study and provide a foundation for further analysis.

Also read: Understanding What is Theoretical Framework

Types Of Terms

In research papers, various types of terms can be identified based on their nature and usage. Here are some common types of terms:

A key term is a term that holds significant importance or plays a crucial role within the context of a research paper. It is a term that encapsulates a core concept, idea, or variable that is central to the study. Key terms are often essential for understanding the research objectives, methodology, findings, and conclusions.

Technical Term

Technical terms refer to specialized vocabulary or terminology used within a specific field of study. These terms are often precise and have specific meanings within their respective disciplines. Examples include “allele,” “hypothesis testing,” or “algorithm.”

Legal Terms

Legal terms are specific vocabulary used within the legal field to describe concepts, principles, and regulations. These terms have particular meanings within the legal context. Examples include “defendant,” “plaintiff,” “due process,” or “jurisdiction.”

Definitional Term

A definitional term refers to a word or phrase that requires an explicit definition to ensure clarity and understanding within a particular context. These terms may be technical, abstract, or have multiple interpretations.

Career Privacy Term

Career privacy term refers to a concept or idea related to the privacy of individuals in the context of their professional or occupational activities. It encompasses the protection of personal information, and confidential data, and the right to control the disclosure of sensitive career-related details. 

A broad term is a term that encompasses a wide range of related concepts, ideas, or objects. It has a broader scope and may encompass multiple subcategories or specific examples.

Also read: Keywords In A Research Paper: The Importance Of The Right Choice

Steps To Writing Definitions Of Terms

When writing the definition of terms section for a research paper, you can follow these steps to ensure clarity and accuracy:

Step 1: Identify Key Terms

Review your research paper and identify the key terms that require definition. These terms are typically central to your study, specific to your field or topic, or may have different interpretations.

Step 2: Conduct Research

Conduct thorough research on each key term to understand its commonly accepted definition, usage, and any variations or nuances within your specific research context. Consult authoritative sources such as academic journals, books, or reputable online resources.

Step 3: Craft Concise Definitions

Based on your research, craft concise definitions for each key term. Aim for clarity, precision, and relevance. Define the term in a manner that reflects its significance within your research and ensures reader comprehension.

Step 4: Use Your Own Words

Paraphrase the definitions in your own words to avoid plagiarism and maintain academic integrity. While you can draw inspiration from existing definitions, rephrase them to reflect your understanding and writing style. Avoid directly copying from sources.

Step 5: Provide Examples Or Explanations

Consider providing examples, explanations, or context for the defined terms to enhance reader understanding. This can help illustrate how the term is applied within your research or clarify its practical implications.

Step 6: Order And Format

Decide on the order in which you present the definitions. You can follow alphabetical order or arrange them based on their importance or relevance to your research. Use consistent formatting, such as bold or italics, to distinguish the defined terms from the rest of the text.

Step 7: Revise And Refine

Review the definitions for clarity, coherence, and accuracy. Ensure that they align with your research objectives and are tailored to your specific study. Seek feedback from peers, mentors, or experts in your field to further refine and improve the definitions.

Step 8: Include Proper Citations

If you have drawn ideas or information from external sources, remember to provide proper citations for those sources. This demonstrates academic integrity and acknowledges the original authors.

Step 9: Incorporate The Section Into Your Paper

Integrate the definition of terms section into your research paper, typically as an early section following the introduction. Make sure it flows smoothly with the rest of the paper and provides a solid foundation for understanding the subsequent content.

By following these steps, you can create a well-crafted and informative definition of terms section that enhances the clarity and comprehension of your research paper.

In conclusion, the definition of terms in a research paper plays a critical role by providing clarity, establishing a common understanding, and enhancing communication among readers. The definition of terms section is an essential component that contributes to the overall quality, rigor, and effectiveness of a research paper.

Also read: Beyond The Main Text: The Value Of A Research Paper Appendix

Join Our Fast-Growing Community Of Users To Revolutionize Scientific Communication!

Every individual needs a community to learn, grow, and nurture their hobbies, passions, and skills. But when you are a scientist, it becomes difficult to identify the right community that aligns with your goals, has like-minded professionals, and understands mutual collaboration. 

If you are a scientist, looking for a great community, Mind the Graph is here. Join our fast-growing community of users to revolutionize scientific communication and build a healthy collaboration. Sign up for free.

scientifically-accurate-posters

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

Child Care and Early Education Research Connections

Research glossary.

The research glossary defines terms used in conducting social science and policy research, for example those describing methods, measurements, statistical procedures, and other aspects of research; the child care glossary defines terms used to describe aspects of child care and early education practice and policy.

Educational resources and simple solutions for your research journey

technical term for research paper

6 Commonly Confused Research Terms

technical term for research paper

While writing your research paper, you would come across elements that are the building blocks of a research paper. However, these often technical and confusing terms in research papers may trip up early career researchers. They may find some terms or elements overlapping and may struggle to differentiate between them. Through this article, we aim to clear the deck for successful research writing by helping you understand commonly confused research terms.

1. Citations and references

One set of confusing terms in research is citations and references You All sources used in a paper must always be mentioned within or at the end of the research paper. Text taken verbatim from any source must have all the details of the source within the paper and alongside the text. In research paper terms, this is a citation. References, on the other hand, are the listed versions of all the sources – books, articles, documents, videos, interviews – that were consumed as a part of research and used for writing the research paper.

2. Aim and objectives

These research paper terms might have similar meanings but when these terms are used in research, they should be considered separate. You may think of aims as the ultimate destination and objectives as the route you take to reach your destination. Here’s something to help understand these confusing terms in research. Aims refer to the outcome of the study – anything that you found out, could prove, or could conclude through your research. On the other hand, objectives are the ways in which you’re going to attain your research aims. Aims are broad in nature, while objectives are very specific and focused. Some types of manuscripts only require you to state an aim, others only objectives, and some require both.

3. Research methods and research methodology

Yes, these research paper terms are not interchangeable. Research methodology refers to the principles that guide you to pick the suitable methods for your research paper. For example, it helps you decide what kind of data analysis would help you achieve your aim – qualitative or quantitative. Research methods are the actual methods used to perform the experiments required to successfully complete your research paper. Depending on your research methodology, the research methods may vary including, but not limited to, observation, surveys, interviews, and laboratory experiments. So, be very careful when working with these two confusing terms in research and writing these sections.

4. Background of a study and introduction

It’s essential to understand these research paper terms to impress your readers – journal editors, fellow researchers, and your target audience. The background of a study is the missing piece of the existing literature’s puzzle. Its purpose is to state the significance of your study and the position of your research paper within the existing literature. It is not lengthy and helps the reader understand your topic of research with a wider perspective. Meanwhile, the introduction of a research paper is the opening section of your paper. It’s meant to set the context for the rest of the paper, establish the purpose of the study, and state the research question. So be sure not to mix up these confusing terms in research.

confusing terms in research

5. Implications and limitations

Another set of research paper terms that researchers often get confused about is implications and limitations. The ways in which your research findings can be helpful and may be applied are called implications, whereas the shortcomings or the way in which your research findings cannot be applied in real life are the limitations. Stating these two distinct research terms gives a holistic view of the applicability and scope of your research findings, and thus, having clarity on the meaning of these confusing terms in research is crucial.

6. Footnotes and endnotes

The last pair of research paper terms is footnotes and endnotes. Despite their self-explanatory names, this pair of confusing terms in research is a common source of error. Footnotes and endnotes are a way of providing additional information in your research paper. At times, authors may want to elaborate something they have written, but since adding an explanation within the main text may obstruct the flow, this information is added either at the bottom of the page or at the end of the research paper. Depending on the positioning, these additional notes are categorized as footnotes or endnotes when talking about research paper terms. As the names suggest, footnotes are mentioned at the bottom of the page, while endnotes are mentioned at the end of the research paper. Since both have the same function, it’s only a matter of choice which one you prefer to use. While footnotes make it convenient for the reader, having endnotes makes your paper clutter-free.

I hope reading this article helped you distinguish between these confusing terms in research. Moreover, as you gain experience by reading more research papers and writing more papers, you will get better at understanding these research paper terms and other nuances.

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

trends in science communication

What is Research Impact: Types and Tips for Academics

Research in Shorts

Research in Shorts: R Discovery’s New Feature Helps Academics Assess Relevant Papers in 2mins 

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

A Guide to Technical Writing (With Examples)

A Guide to Technical Writing (With Examples)

4-minute read

  • 5th May 2023

You can find technical writing in lots of places, including in your home, at your job, in many industries, and in businesses of all sizes. If you need help with business writing specifically, check out how we can assist you .

In today’s post, we’ll break down what technical writing is and how to do it effectively. We’ll also provide some handy examples.

What Is Technical Writing?

Technical writing doesn’t always look very technical! It can be anything that describes how to do a task or how to operate a machine or system. Or it can cover a specialized topic. Technical writing includes recipes in your favorite cookbook, board game instructions, operator manuals, health and safety regulations, legal documents, and financial reports.

Instructions for Carrying Out a Task

This type of technical writing can be a recipe for a cake, the instructions for a board game, tips on how to walk your dog to heel, or the script for a social media video on how to cut your own hair.

Operating Manuals for Machinery, Appliances, or Systems

Technical writing can also be the user guide for a dishwasher, for a factory machine that makes cardboard boxes, a “how to” guide for spreadsheets, or instructions for changing the oil in your motorcycle.

Specialized Topics

The list here could be very, very long! Technical writing on specialized topics includes a company’s business reports, a medical consultant’s letter to a patient, health and safety regulations, employment policies, and legal documents.

So How Do I Produce a Great Piece of Technical Writing?

Let’s take it in three stages: Who? What? How?

Who Is It For?

In any type of writing, knowing your audience is important. This is particularly true of technical writing. Here are some examples of who might read technical writing:

·  A renter of an apartment that needs details on their lease

·  An electrical engineer who needs to know how the wiring is laid out in the apartment block

·  The janitor of that same building who needs to know the location of the emergency lights

·  The occupant of apartment 61, who needs to know how to use the oven in their kitchen

They all need information presented to them, but what information do they need?

What Do They Need?

The renter needs a legal document that leaves no room for doubt about their legal rights and obligations and those of their landlord. The document will be very detailed, containing terms that need careful explanation.

The electrical engineer needs accurate, clear information about the wiring, as they could get hurt or cause harm to someone else if the diagram is inaccurate.

The janitor needs clear directions and a map of where the emergency lights are.

The occupant of apartment 61 needs instructions that are written in plain English so they can use their oven safely.

How Should Technical Writing Be Composed?

Follow these steps when writing a technical document:

·  Research and know your subject thoroughly.

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

·  Decide on the appropriate writing style. Just because it’s technical, doesn’t mean it has to contain lots of jargon . Be concise, be direct, and be straightforward.

·  Consider whether you need to include diagrams, maps, images, charts, and/or tables.

·  If writing instructions, take it one step at a time, write objectively , and make sure the instructions work!

Examples of Technical Writing

Let’s look at some examples:

The first version contains unnecessary words, but the warnings are not specific enough. The instructions should be concise and clear. In the second version, the danger is stated right away, and the critical warnings are concise and specific.

In these examples, the first version is unnecessarily wordy. It provides a lot of detail for minor tasks but gives vague instructions for bigger tasks. The second version is much clearer. The instructions are easier to follow, and they include each necessary step.

Good technical writing needs the following attributes:

1. Relevance

2. Accuracy

4. Accessibility

5. Simplicity

Really good technical writing will include these attributes every time.

Is technical writing difficult?

Technical writing does not have to be difficult if you follow our guide and do your research beforehand.

Are there professional bodies for technical writers?

There are several professional organizations for technical writing. This list from UTA Libraries is very useful.

What can I do if I’m not sure that my technical writing style is appropriate to my subject?

We have experts in many fields who can check your writing and advise on style .

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

5-minute read

Free Email Newsletter Template

Promoting a brand means sharing valuable insights to connect more deeply with your audience, and...

6-minute read

How to Write a Nonprofit Grant Proposal

If you’re seeking funding to support your charitable endeavors as a nonprofit organization, you’ll need...

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Create a Structured Research Paper Outline | Example

Published on August 7, 2022 by Courtney Gahan . Revised on August 15, 2023.

How to Create a Structured Research Paper Outline

A research paper outline is a useful tool to aid in the writing process , providing a structure to follow with all information to be included in the paper clearly organized.

A quality outline can make writing your research paper more efficient by helping to:

  • Organize your thoughts
  • Understand the flow of information and how ideas are related
  • Ensure nothing is forgotten

A research paper outline can also give your teacher an early idea of the final product.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Research paper outline example, how to write a research paper outline, formatting your research paper outline, language in research paper outlines.

  • Definition of measles
  • Rise in cases in recent years in places the disease was previously eliminated or had very low rates of infection
  • Figures: Number of cases per year on average, number in recent years. Relate to immunization
  • Symptoms and timeframes of disease
  • Risk of fatality, including statistics
  • How measles is spread
  • Immunization procedures in different regions
  • Different regions, focusing on the arguments from those against immunization
  • Immunization figures in affected regions
  • High number of cases in non-immunizing regions
  • Illnesses that can result from measles virus
  • Fatal cases of other illnesses after patient contracted measles
  • Summary of arguments of different groups
  • Summary of figures and relationship with recent immunization debate
  • Which side of the argument appears to be correct?

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

technical term for research paper

Try for free

Follow these steps to start your research paper outline:

  • Decide on the subject of the paper
  • Write down all the ideas you want to include or discuss
  • Organize related ideas into sub-groups
  • Arrange your ideas into a hierarchy: What should the reader learn first? What is most important? Which idea will help end your paper most effectively?
  • Create headings and subheadings that are effective
  • Format the outline in either alphanumeric, full-sentence or decimal format

There are three different kinds of research paper outline: alphanumeric, full-sentence and decimal outlines. The differences relate to formatting and style of writing.

  • Alphanumeric
  • Full-sentence

An alphanumeric outline is most commonly used. It uses Roman numerals, capitalized letters, arabic numerals, lowercase letters to organize the flow of information. Text is written with short notes rather than full sentences.

  • Sub-point of sub-point 1

Essentially the same as the alphanumeric outline, but with the text written in full sentences rather than short points.

  • Additional sub-point to conclude discussion of point of evidence introduced in point A

A decimal outline is similar in format to the alphanumeric outline, but with a different numbering system: 1, 1.1, 1.2, etc. Text is written as short notes rather than full sentences.

  • 1.1.1 Sub-point of first point
  • 1.1.2 Sub-point of first point
  • 1.2 Second point

To write an effective research paper outline, it is important to pay attention to language. This is especially important if it is one you will show to your teacher or be assessed on.

There are four main considerations: parallelism, coordination, subordination and division.

Parallelism: Be consistent with grammatical form

Parallel structure or parallelism is the repetition of a particular grammatical form within a sentence, or in this case, between points and sub-points. This simply means that if the first point is a verb , the sub-point should also be a verb.

Example of parallelism:

  • Include different regions, focusing on the different arguments from those against immunization

Coordination: Be aware of each point’s weight

Your chosen subheadings should hold the same significance as each other, as should all first sub-points, secondary sub-points, and so on.

Example of coordination:

  • Include immunization figures in affected regions
  • Illnesses that can result from the measles virus

Subordination: Work from general to specific

Subordination refers to the separation of general points from specific. Your main headings should be quite general, and each level of sub-point should become more specific.

Example of subordination:

Division: break information into sub-points.

Your headings should be divided into two or more subsections. There is no limit to how many subsections you can include under each heading, but keep in mind that the information will be structured into a paragraph during the writing stage, so you should not go overboard with the number of sub-points.

Ready to start writing or looking for guidance on a different step in the process? Read our step-by-step guide on how to write a research paper .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Gahan, C. (2023, August 15). How to Create a Structured Research Paper Outline | Example. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/research-paper/outline/

Is this article helpful?

Courtney Gahan

Courtney Gahan

Other students also liked, research paper format | apa, mla, & chicago templates, writing a research paper introduction | step-by-step guide, writing a research paper conclusion | step-by-step guide, what is your plagiarism score.

IMAGES

  1. FREE 42+ Research Papers in PDF

    technical term for research paper

  2. 26+ Paper Format Templates -PDF

    technical term for research paper

  3. FREE 46+ Research Paper Examples & Templates in PDF, MS Word

    technical term for research paper

  4. How to Write a Term Paper

    technical term for research paper

  5. 😀 Research paper format. The Basics of a Research Paper Format. 2019-02-10

    technical term for research paper

  6. Technical Terminologies Used in Research

    technical term for research paper

VIDEO

  1. How to make a Term/ Research Paper? -Tips and Tricks (Urdu/Hindi)

  2. Need A Pomodoro Study Session?

  3. Writing the Perfect Term Paper: Learn the Basics in Urdu/Hindi (Part2)

  4. 3.5 Hour Intense Study With Me

  5. Deep Focus Winter Study

  6. Writing Technical Papers

COMMENTS

  1. Technical Terms

    Technical Terms - MIT ... Technical Terms

  2. 5.1 Research Terminology

    Research: the systematic process of finding out more about something than you already know, ideally so that you can prove a hypothesis, produce new knowledge and understanding, and make evidence-based decisions. Research Methods: techniques of collecting, sorting, and analyzing information/data. Data: bits of information.

  3. Organizing Your Social Sciences Research Paper

    Organizing Your Social Sciences Research Paper

  4. How to write a technical paper or a research paper

    How to write a technical paper or a research paper

  5. PDF The Structure of an Academic Paper

    The Structure of an Academic Paper

  6. Technical Terms, Notations, and Scientific Jargon in Research Papers

    Scientific jargon refers to technical terms specific to your discipline. Here is an example. In the example below, the same statement has been written in both everyday language and using scientific jargon. ... Examples of notations introduced in the introduction paragraph of a research paper [1] We introduce some notations which applies ...

  7. How to Write a Research Paper

    How to Write a Research Paper | A Beginner's Guide

  8. PDF Glossary of Key Terms in Educational Research

    GLOSSARY OF KEY TERMS IN EDUCATIONAL RESEARCH

  9. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  10. Basics of scientific and technical writing

    Introduction to scientific/technical writing. Scientific/technical writing is an essential part of research. The outcome of a research activity should be shared with others in the form of scientific paper publications; some ideas require a patent to reserve the implementation rights; and almost any research activity requires a funding source ...

  11. What Is a Glossary?

    What Is a Glossary? | Definition, Templates, & Examples

  12. Glossary of Key Research Terms

    Glossary of Key Research Terms - The WAC Clearinghouse

  13. Confusion to Clarity: Definition of Terms in a Research Paper

    Confusion to Clarity: Definition of Terms in a Research Paper

  14. Research Glossary

    Research Glossary

  15. Writing a Research Paper Introduction

    Writing a Research Paper Introduction | Step-by-Step Guide

  16. 6 Commonly Confused Research Terms

    However, these often technical and confusing terms in research papers may trip up early career researchers. They may find some terms or elements overlapping and may struggle to differentiate between them. Through this article, we aim to clear the deck for successful research writing by helping you understand commonly confused research terms. 1.

  17. PDF How to Write and Publish Technical Papers

    Technical papers are short - usually around six to eight pages long - however the actual text can be as little as two or three pages. This is because the Title, Synopsis and Introduction sections can take up the first page, and the Conclusions, Acknowledgements, References, and Bio's of authors can take up the last page.

  18. A Guide to Technical Writing (With Examples)

    Here are some examples of who might read technical writing: · A renter of an apartment that needs details on their lease. · An electrical engineer who needs to know how the wiring is laid out in the apartment block. · The janitor of that same building who needs to know the location of the emergency lights. · The occupant of apartment 61 ...

  19. 2.14: Technical Definitions and Descriptions

    Learning Objectives. Upon completion of this chapter, readers will be able to: Explain and apply the 5 primary characteristics of technical definitions. Write a definition using appropriate content, descriptors, details, length, placement, and audience analysis. Avoid common technical definition problems.

  20. 100 Technology Topics for Research Papers

    100 Technology Topics for Research Papers

  21. How to Create a Structured Research Paper Outline

    How to Create a Structured Research Paper Outline

  22. Technical Terms Used in Research Flashcards

    research paper. it is also known as term paper or research report. A piece of academic writing that asks students to locate information about a topic, take a stand on that topic, and provide support for that stand (Lapid, Serrano 2015). quantitative research. The data produced are always numerical, and they are.

  23. Technical Terms in Research (Grade 10)

    Technical Terms in Research (Grade 10) | PDF