Tech Differences

Know the Technical Differences

Difference Between Copy Constructor and Assignment Operator in C++

Copy-constructor-assignment-operator

Let us study the difference between the copy constructor and assignment operator.

Content: Copy Constructor Vs Assignment Operator

Comparison chart.

  • Key Differences
Basis for ComparisonCopy ConstructorAssignment Operator
BasicThe copy constructor is an overloaded constructor.The assignment operator is a bitwise operator.
MeaningThe copy constructor initializes the new object with an already existing object.The assignment operator assigns the value of one object to another object both of which are already in existence.
Syntaxclass_name(cont class_name &object_name) {
//body of the constructor
}
class_name Ob1, Ob2;
Ob2=Ob1;
Invokes(1)Copy constructor invokes when a new object is initialized with existing one.
(2)The object passed to a function as a non-reference parameter.
(3)The object is returned from the function.
The assignment operator is invoked only when assigning the existing object a new object.
Memory AllocationBoth the target object and the initializing object shares the different memory locations.Both the target object and the initializing object shares same allocated memory.
DefaultIf you do not define any copy constructor in the program, C++ compiler implicitly provides one.If you do not overload the "=" operator, then a bitwise copy will be made.

Definition of Copy Constructor

A “copy constructor” is a form of an overloaded constructor . A copy constructor is only called or invoked for initialization purpose. A copy constructor initializes the newly created object by another existing object.

When a copy constructor is used to initialize the newly created target object, then both the target object and the source object shares a different memory location. Changes done to the source object do not reflect in the target object. The general form of the copy constructor is

If the programmer does not create a copy constructor in a C++ program, then the compiler implicitly provides a copy constructor. An implicit copy constructor provided by the compiler does the member-wise copy of the source object. But, sometimes the member-wise copy is not sufficient, as the object may contain a pointer variable.

Copying a pointer variable means, we copy the address stored in the pointer variable, but we do not want to copy address stored in the pointer variable, instead, we want to copy what pointer points to. Hence, there is a need of explicit ‘copy constructor’ in the program to solve this kind of problems.

A copy constructor is invoked in three conditions as follow:

  • Copy constructor invokes when a new object is initialized with an existing one.
  • The object passed to a function as a non-reference parameter.
  • The object is returned from the function.

Let us understand copy constructor with an example.

In the code above, I had explicitly declared a constructor “copy( copy &c )”. This copy constructor is being called when object B is initialized using object A. Second time it is called when object C is being initialized using object A.

When object D is initialized using object A the copy constructor is not called because when D is being initialized it is already in the existence, not the newly created one. Hence, here the assignment operator is invoked.

Definition of Assignment Operator

The assignment operator is an assigning operator of C++.  The “=” operator is used to invoke the assignment operator. It copies the data in one object identically to another object. The assignment operator copies one object to another member-wise. If you do not overload the assignment operator, it performs the bitwise copy. Therefore, you need to overload the assignment operator.

In above code when object A is assigned to object B the assignment operator is being invoked as both the objects are already in existence. Similarly, same is the case when object C is initialized with object A.

When the bitwise assignment is performed both the object shares the same memory location and changes in one object reflect in another object.

Key Differences Between Copy Constructor and Assignment Operator

  • A copy constructor is an overloaded constructor whereas an assignment operator is a bitwise operator.
  • Using copy constructor you can initialize a new object with an already existing object. On the other hand, an assignment operator copies one object to the other object, both of which are already in existence.
  • A copy constructor is initialized whenever a new object is initialized with an already existing object, when an object is passed to a function as a non-reference parameter, or when an object is returned from a function. On the other hand, an assignment operator is invoked only when an object is being assigned to another object.
  • When an object is being initialized using copy constructor, the initializing object and the initialized object shares the different memory location. On the other hand, when an object is being initialized using an assignment operator then the initialized and initializing objects share the same memory location.
  • If you do not explicitly define a copy constructor then the compiler provides one. On the other hand, if you do not overload an assignment operator then a bitwise copy operation is performed.

The Copy constructor is best for copying one object to another when the object contains raw pointers.

Related Differences:

  • Difference Between & and &&
  • Difference Between Recursion and Iteration
  • Difference Between new and malloc( )
  • Difference Between Inheritance and Polymorphism
  • Difference Between Constructor and Destructor

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending Categories

Data Structure

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Copy constructor vs assignment operator in C++

The Copy constructor and the assignment operators are used to initializing one object to another object. The main difference between them is that the copy constructor creates a separate memory block for the new object. But the assignment operator does not make new memory space. It uses the reference variable to point to the previous memory block.

Copy Constructor (Syntax)

Assignment operator (syntax).

Let us see the detailed differences between Copy constructor and Assignment Operator.

Copy Constructor
Assignment Operator
The Copy constructor is basically an overloaded constructor
Assignment operator is basically an operator.
This initializes the new object with an already existing object
This assigns the value of one object to another object both of which are already exists.
Copy constructor is used when a new object is created with some existing object
This operator is used when we want to assign existing object to new object.
Both the objects uses separate memory locations.
One memory location is used but different reference variables are pointing to the same location.
If no copy constructor is defined in the class, the compiler provides one.
If the assignment operator is not overloaded then bitwise copy will be made

Ankith Reddy

  • Related Articles
  • Difference Between Copy Constructor and Assignment Operator in C++
  • What's the difference between assignment operator and copy constructor in C++?
  • Virtual Copy Constructor in C++
  • How to use an assignment operator in C#?
  • When is copy constructor called in C++?
  • What is a copy constructor in C#?
  • When should we write our own assignment operator in C++?
  • What is Multiplication Assignment Operator (*=) in JavaScript?
  • What is Addition Assignment Operator (+=) in JavaScript?
  • When should we write our own assignment operator in C++ programming?
  • Ternary operator ?: vs if…else in C/C++
  • What is Bitwise OR Assignment Operator (|=) in JavaScript?
  • What is Bitwise XOR Assignment Operator (^=) in JavaScript?
  • Why do we need a copy constructor and when should we use a copy constructor in Java?
  • C program on calculating the amount with tax using assignment operator

Kickstart Your Career

Get certified by completing the course

Pediaa.Com

Home » Technology » IT » Programming » What is the Difference Between Copy Constructor and Assignment Operator

What is the Difference Between Copy Constructor and Assignment Operator

The main difference between copy constructor and assignment operator is that copy constructor is a type of constructor that helps to create a copy of an already existing object without affecting the values of the original object while assignment operator is an operator that helps to assign a new value to a variable in the program.

A constructor is a special method that helps to initialize an object when creating it. It has the same name as the class name and has no return type. A programmer can write a constructor to give initial values to the instance variables in the class. If there is no constructor in the program, the default constructor will be called. Copy constructor is a type of constructor that helps to create a copy of an existing object. On the other hand, assignment operator helps to assign a new value to a variable.

Key Areas Covered

1. What is Copy Constructor      – Definition, Functionality 2. What is Assignment Operator      – Definition, Functionality 3. What is the Difference Between Copy Constructor and Assignment Operator      – Comparison of Key Differences

Constructor, Copy Constructor, Assignment Operator, Variable

Difference Between Copy Constructor and Assignment Operator - Comparison Summary

What is Copy Constructor

In programming, sometimes it is necessary to create a separate copy of an object without affecting the original object. Copy constructor is useful in these situations. It allows creating a replication of an existing object of the same class. Refer the below example.

What is the Difference Between Copy Constructor and Assignment Operator

Figure 1: Program with copy constructor

The class Triangle has two instance variables called base and height. In line 8, there is a parameterized constructor. It takes two arguments. These values are assigned to the instance variables base and height. In line 13, there is a copy constructor. It takes an argument of type Triangle. New object’s base value is assigned to the instance variable base. Similarly, the new object’s height value is assigned to the instance variable height. Furthermore, there is a method called calArea to calculate and return area.

In the main method, t1 and t2 are Triangle objects. The object t1 is passed when creating the t2 object. The copy constructor is called to create t2 object. Therefore, the base and the height of the t2 object is the same as the base and height of t1 object. Finally, both objects have the same area.    

What is Assignment Operator

An assignment operator is useful to assign a new value to a variable. The assignment operator is “=”.  When there is a statement as c = a + b; the summation of ‘a’ and ‘b’ is assigned to the variable ‘c’.

Main Difference - Copy Constructor vs Assignment Operator

Figure 2: Program with assignment operator

The class Number has an instance variable called num. There is a no parameter constructor in line 7. However, there is a parameterized constructor in line 9. It takes an argument and assigns it to the instance variable using the assignment operator. In line 12, there is a method called display to display the number. In the main method, num1 and num2 are two objects of type Number. Printing num1 and num2 gives the references to those objects. The num3 is of type Number. In line 24, num1 is assigned to num3 using the assignment operator. Therefore, num3 is referring to num1 object. So, printing num3 gives the num1 reference.  

The assignment operator and its variations are as follows.

=

Assigns the right operand to the left operand

 z = x +y

+=

Add the right operand to the left operand and assign the result to the left operand

z += y is equivalent to z = z +y

– =

Subtract the right operand from the left operand and assign the result to left operand.

 

z -= y is equivalent to

z = z -y

* =

Multiply the right operand with the left operand and assign the result to left operand.

 

z *=y is equivalent to

z = z*y

/=

Divides the left operand with right operand and assigns the answer to left operand.

 

z / = y is equivalent to

z = z/y

%=

Takes the modulus of two operands and assigns the answer to left operand.

 

z % = y is equivalent to

z = z % y

<<=

Left shift AND assignment operator

z << 5 is equivalent to

 z= z <<5

>>=

Right shift AND assignment operator

z >>5 is equivalent to

 z= z>>5

&=

Bitwise AND assignment operator

z&=5 is equivalent to

z = z&5

^=

Bitwise exclusive OR and assignment operator

z ^=5 is equivalent to

z = z^5

|=

Bitwise inclusive OR and assignment operator

z |= 5 is equivalent to z = z|5

Difference Between Copy Constructor and Assignment Operator

Copy constructor is a special constructor for creating a new object as a copy of an existing object. In contrast, assignment operator is an operator that is used to assign a new value to a variable. These definitions explain the basic difference between copy constructor and assignment operator.

Functionality with Objects

Functionality with objects is also a major difference between copy constructor and assignment operator. Copy constructor initializes the new object with an already existing object while assignment operator assigns the value of one object to another object which is already in existence.

Copy constructor helps to create a copy of an existing object while assignment operator helps to assign a new value to a variable. This is another difference between copy constructor and assignment operator.

The difference between copy constructor and assignment operator is that copy constructor is a type of constructor that helps to create a copy of an already existing object without affecting the values of the original object while assignment operator is an operator that helps to assign a new value to a variable in the program.

1. Thakur, Dinesh. “Copy Constructor in Java Example.” Computer Notes, Available here .

' src=

About the Author: Lithmee

Lithmee holds a Bachelor of Science degree in Computer Systems Engineering and is reading for her Master’s degree in Computer Science. She is passionate about sharing her knowldge in the areas of programming, data science, and computer systems.

​You May Also Like These

Leave a reply cancel reply.

  • Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

MyClass& other ); MyClass( MyClass& other ); MyClass( MyClass& other ); MyClass( MyClass& other );
MyClass* other );
MyClass { x; c; std::string s; };
MyClass& other ) : x( other.x ), c( other.c ), s( other.s ) {}
);
print_me_bad( std::string& s ) { std::cout << s << std::endl; } print_me_good( std::string& s ) { std::cout << s << std::endl; } std::string hello( ); print_me_bad( hello ); print_me_bad( std::string( ) ); print_me_bad( ); print_me_good( hello ); print_me_good( std::string( ) ); print_me_good( );
, );
=( MyClass& other ) { x = other.x; c = other.c; s = other.s; * ; }
< T > MyArray { size_t numElements; T* pElements; : size_t count() { numElements; } MyArray& =( MyArray& rhs ); };
<> MyArray<T>:: =( MyArray& rhs ) { ( != &rhs ) { [] pElements; pElements = T[ rhs.numElements ]; ( size_t i = 0; i < rhs.numElements; ++i ) pElements[ i ] = rhs.pElements[ i ]; numElements = rhs.numElements; } * ; }
<> MyArray<T>:: =( MyArray& rhs ) { MyArray tmp( rhs ); std::swap( numElements, tmp.numElements ); std::swap( pElements, tmp.pElements ); * ; }
< T > swap( T& one, T& two ) { T tmp( one ); one = two; two = tmp; }
<> MyArray<T>:: =( MyArray tmp ) { std::swap( numElements, tmp.numElements ); std::swap( pElements, tmp.pElements ); * ; }

cppreference.com

Copy assignment operator.

(C++20)
(C++20)
(C++11)
(C++20)
(C++17)
(C++11)
(C++11)
General topics
(C++11)
-
-expression
block


/
(C++11)
(C++11)
(C++11)
(C++20)
(C++20)
(C++11)

expression
pointer
specifier

specifier (C++11)
specifier (C++11)
(C++11)

(C++11)
(C++11)
(C++11)
General
/ types
types
Members
pointer
-declarations
(C++11)
specifier
specifier
Special member functions
(C++11)
(C++11)
Inheritance
specifier (C++11)
specifier (C++11)

A copy assignment operator is a non-template non-static member function with the name operator = that can be called with an argument of the same class type and copies the content of the argument without mutating the argument.

Syntax Explanation Implicitly-declared copy assignment operator Implicitly-defined copy assignment operator Deleted copy assignment operator Trivial copy assignment operator Eligible copy assignment operator Notes Example Defect reports See also

[ edit ] Syntax

For the formal copy assignment operator syntax, see function declaration . The syntax list below only demonstrates a subset of all valid copy assignment operator syntaxes.

return-type parameter-list  (1)
return-type parameter-list  function-body (2)
return-type parameter-list-no-default  (3) (since C++11)
return-type parameter-list  (4) (since C++11)
return-type class-name  parameter-list  function-body (5)
return-type class-name  parameter-list-no-default  (6) (since C++11)
class-name - the class whose copy assignment operator is being declared, the class type is given as in the descriptions below
parameter-list - a of only one parameter, which is of type , , const T&, volatile T& or const volatile T&
parameter-list-no-default - a of only one parameter, which is of type , , const T&, volatile T& or const volatile T& and does not have a default argument
function-body - the of the copy assignment operator
return-type - any type, but is favored in order to allow chaining asssignments

[ edit ] Explanation

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type, the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B & or const volatile B & ;
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M & or const volatile M & .

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) .

Due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument.

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

The implicitly-declared (or defaulted on its first declaration) copy assignment operator has an exception specification as described in dynamic exception specification (until C++17) noexcept specification (since C++17)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used or needed for constant evaluation (since C++14) . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types, the operator performs member-wise copy assignment of the object's direct bases and non-static data members, in their initialization order, using built-in assignment for the scalars, memberwise copy-assignment for arrays, and copy assignment operator for class types (called non-virtually).

The implicitly-defined copy assignment operator for a class is if

is a , and that is of class type (or array thereof), the assignment operator selected to copy that member is a constexpr function.
(since C++14)
(until C++23)

The implicitly-defined copy assignment operator for a class is .

(since C++23)

The generation of the implicitly-defined copy assignment operator is deprecated if has a user-declared destructor or user-declared copy constructor.

(since C++11)

[ edit ] Deleted copy assignment operator

An implicitly-declared or explicitly-defaulted (since C++11) copy assignment operator for class T is undefined (until C++11) defined as deleted (since C++11) if any of the following conditions is satisfied:

  • T has a non-static data member of a const-qualified non-class type (or possibly multi-dimensional array thereof).
  • T has a non-static data member of a reference type.
  • T has a potentially constructed subobject of class type M (or possibly multi-dimensional array thereof) such that the overload resolution as applied to find M 's copy assignment operator
  • does not result in a usable candidate, or
  • in the case of the subobject being a variant member , selects a non-trivial function.

The implicitly-declared copy assignment operator for class is defined as deleted if declares a or .

(since C++11)

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • it is not user-provided (meaning, it is implicitly-defined or defaulted);
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the copy assignment operator selected for every direct base of T is trivial;
  • the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial.

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Eligible copy assignment operator

A copy assignment operator is eligible if it is either user-declared or both implicitly-declared and definable.

(until C++11)

A copy assignment operator is eligible if it is not deleted.

(since C++11)
(until C++20)

A copy assignment operator is eligible if all following conditions are satisfied:

(if any) are satisfied. than any other copy assignment operator.
(since C++20)

Triviality of eligible copy assignment operators determines whether the class is a trivially copyable type .

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move ), and selects the copy assignment if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

See assignment operator overloading for additional detail on the expected behavior of a user-defined copy-assignment operator.

[ edit ] Example

[ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
C++98 the conditions where implicitly-declared copy assignment operators
are undefined did not consider multi-dimensional array types
consider these types
C++11 a volatile subobject made defaulted copy
assignment operators non-trivial ( )
triviality not affected
C++11 operator=(X&) = default was non-trivial made trivial
C++11 a defaulted copy assignment operator for class was not defined as deleted
if is abstract and has non-copy-assignable direct virtual base classes
the operator is defined
as deleted in this case
C++20 a copy assignment operator was not eligible if there
is another copy assignment operator which is more
constrained but does not satisfy its associated constraints
it can be eligible
in this case

[ edit ] See also

  • converting constructor
  • copy constructor
  • copy elision
  • default constructor
  • aggregate initialization
  • constant initialization
  • copy initialization
  • default initialization
  • direct initialization
  • initializer list
  • list initialization
  • reference initialization
  • value initialization
  • zero initialization
  • move assignment
  • move constructor
  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 2 February 2024, at 16:13.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • Network Programming
  • Windows Programming
  • Visual Studio
  • Visual Basic

Logo

CodeGuru content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More .

Copy Constructors and Assignment Operators: Just Tell Me the Rules! Part I

I get asked this question sometimes from seasoned programmers who are new to C++. There are plenty of good books written on the subject, but I found no clear and concise set of rules on the Internet for those who don’t want to understand every nuance of the language—and just want the facts.

Hence this article.

The purpose of copy constructors and assignment operators is easy to understand when you realize that they’re always there even if you don’t write them, and that they have a default behavior that you probably already understand. Every struct and class have a default copy constructor and assignment operator method. Look at a simple use of these.

Start with a struct called Rect with a few fields:

Yes, even a struct as simple as this has a copy constructor and assignment operator. Now, look at this code:

Line 2 invokes the default copy constructor for r2, copying into it the members from r1. Line 3 does something similar, but invokes the default assignment operator of r3, copying into it the members from r1. The difference between the two is that the copy constructor of the target is invoked when the source object is passed in at the time the target is constructed, such as in line 2. The assignment operator is invoked when the target object already exists, such as on line 4.

Looking at what the default implementation produces, examine what Line 4 ends up doing:

So, if the default copy constructor and assignment operators do all this for you, why would anyone implement their own? The problem with the default implementations is that a simple copy of the members may not be appropriate to clone an object. For instance, what if one of the members were a pointer that is allocated by the class? Simply copying the pointer isn’t enough because now you’ll have two objects that have the same pointer value, and both objects will try to free the memory associated with that pointer when they destruct. Look at an example class:

Now, look at some code that uses this class:

The problem is, c1 and c2 will have the same pointer value for the “name” field. When c2 goes out of scope, its destructor will get called and delete the memory that was allocated when c1 was constructed (because the name field of both objects have the same pointer value). Then, when c1 destructs, it will attempt to delete the pointer value, and a “double-free” occur. At best, the heap will catch the problem and report an error. At worst, the same pointer value may, by then, be allocated to another object, the delete will free the wrong memory, and this will introduce a difficult-to-find bug in the code.

The way you want to solve this is by adding an explicit copy constructor and an assignment operator to the class, like so:

Now, the code that uses the class will function properly. Note that the difference between the copy constructor and assignment operator above is that the copy constructor can assume that fields of the object have not been set yet (because the object is just being constructed). However, the assignment operator must handle the case when the fields already have valid values. The assignment operator deletes the contents of the existing string before assigning the new string. You might ask why the tempName local variable is used, and why the code isn’t written as follows instead:

The problem with this code is that if the new operator throws an exception, the object will be left in a bad state because the name field would have already been freed by the previous instruction. By performing all the operations that could fail first and then replacing the fields once there’s no chance of an exception from occurring, the code is exception safe.

Note: The reason the assignment operator returns a reference to the object is so that code such as the following will work: c1 = c2 = c3;

One might think that the case when an explicit copy constructor and assignment operator methods are necessary is when a class or struct contains pointer fields. This is not the case. In the case above, the explicit methods were needed because the data pointed to by the field is owned by the object. If the pointer is a “back” (or weak) pointer, or a reference to some other object that the class is not responsible for releasing, it may be perfectly valid to have more than one object share the value in a pointer field.

There are times when a class field actually refers to some entity that cannot be copied, or it does not make sense to be copied. For instance, what if the field were a handle to a file that it created? It’s possible that copying the object might require that another file be created that has its own handle. But, it’s also possible that more than one file cannot be created for the given object. In this case, there cannot be a valid copy constructor or assignment operator for the class. As you have seen earlier, simply not implementing them does not mean that they won’t exist, because the compiler supplies the default versions when explicit versions aren’t specified. The solution is to provide copy constructors and assignment operators in the class and mark them as private. As long as no code tries to copy the object, everything will work fine, but as soon as code is introduced that attempts to copy the object, the compiler will indicate an error that the copy constructor or assignment operator cannot be accessed.

To create a private copy constructor and assignment operator, one does not need to supply implementation for the methods. Simply prototyping them in the class definition is enough. Example:

Some people wish that C++ did not provide an implicit copy constructor and assignment operator if one isn’t provided. They automatically define a private copy constructor and assignment operator automatically when they define a new class. That way, it will prevent anyone from copying their object unless the explicitly support such an operation. This is generally a good practice.

CodeGuru Staff

More by Author

Best video game development tools, video game careers overview, the top task management software for developers, best online courses for .net developers, news & trends, dealing with non-cls exceptions in .net, online courses to learn video game development, get the free newsletter.

Subscribe to Developer Insider for top news, trends & analysis

Best Online Courses to Learn C++

CodeGuru covers topics related to Microsoft-related software development, mobile development, database management, and web application programming. In addition to tutorials and how-tos that teach programmers how to code in Microsoft-related languages and frameworks like C# and .Net, we also publish articles on software development tools, the latest in developer news, and advice for project managers. Cloud services such as Microsoft Azure and database options including SQL Server and MSSQL are also frequently covered.

Advertisers

Advertise with TechnologyAdvice on CodeGuru and our other developer-focused platforms.

  • Privacy Policy
  • California – Do Not Sell My Information

Property of TechnologyAdvice. © 2023 TechnologyAdvice. All Rights Reserved Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

Javatpoint Logo

  • Interview Q

C++ Tutorial

C++ control statement, c++ functions, c++ pointers, c++ object class, c++ inheritance, c++ polymorphism, c++ abstraction, c++ namespaces, c++ strings, c++ exceptions, c++ templates, signal handling, c++ file & stream, c++ stl tutorial, c++ iterators, c++ programs, interview question.

JavaTpoint

The object-oriented programming idea is supported by the general-purpose, middle-level, case-sensitive, platform agnostic computer language C++. Bjarne Stroustrup developed the C++ programming language in 1979 at Bell Laboratories. Since C++ is a platform-independent programming language, it may be used on a wide range of operating systems, including Windows, Mac OS, and different UNIX versions.

Assignment operators are used to assign values to variables from the aforementioned groups.

Let's first study a little bit about constructors before moving on to copy constructors. When an object is formed, a specific method called a constructor-which has the same name as the class name with the parentheses "()"-is automatically called. Initializing the variables of a freshly generated object is done using the constructor.

A copy constructor is a form of constructor that uses an already-created object from the same class to initialize a new object.

Let's now go over the specifics of the notion and contrast and compare the features of the assignment operator and copy constructor.

The assignment operator is used to give a variable a value. The assignment operator has a variable name as its left operand and a value to that variable as its right operand. A compilation error will be triggered if neither operand's datatype matches the other.

Assignment operators come in various forms.

: = operator Only the value is given to the variable. For instance, if "a=10," variable "a" will be given the value of 10.

The += operator first multiplies the variable's current value by the value on the right side before assigning the new value.

The operator "-=" first subtracts the variable's current value from the value on the right side before appending the new value.

In order to assign a new value to a variable, the *= operator first multiplies the variable's current value by the value on the right side.

The operator /= first divides the variable's current value by the value on the right side before assigning the new value to the variable.

Below is an illustration of an assignment operator. The assignment operator is being used in this case to give values to several variables.

The two variables "a" and "b" were used in the example above, and we first set the value of "a" to 5 using the assignment operator "=". And we've given variable b the value of the a variable. The output from the aforementioned code is shown below.

Programmers frequently need to do this in order to duplicate an object without affecting the original. The copy constructor is used in these circumstances. The copy constructor produces an object by initializing it with a different object of the same class that has already been constructed. The copy constructor comes in two varieties.

The default copy constructor is created by the C++ compiler when the copy constructor is not declared, and it copies all member variables exactly as they are.

User-Defined Copy Constructor: This term refers to a copy constructor that has been defined by the user.

The syntax for Copy Constructor is -

All of these C++ concepts' primary functions are to assign values, but the key distinction between them is that while the copy constructor produces a new object and assigns the value, the assignment operator assigns the value to the data member of the same object rather than to a new object.

The key distinctions between assignment operator and copy constructor are shown in the following table.

Copy constructor Assignment operator
An example of an overloaded constructor is the copy constructor.
A new object is initialized by an existing object of the same type using the copy constructor.

An operator that assigns a value to objects or data members is known as an assignment operator.
It transfers an object's value from one produced object to another.
When an old object is used to initialize a new one, as well as when the object is supplied to a function as a non-reference parameter, the copy constructor is called. When an old object's value is transferred to a new object, the assignment operator is used.
The newly invoked object will share distinct memory addresses with the previously generated object. The first object and the second object, to whom the first object's value is assigned, share the same memory addresses.

Youtube

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

  • C++ Classes and Objects
  • C++ Polymorphism
  • C++ Inheritance
  • C++ Abstraction
  • C++ Encapsulation
  • C++ OOPs Interview Questions
  • C++ OOPs MCQ
  • C++ Interview Questions
  • C++ Function Overloading
  • C++ Programs
  • C++ Preprocessor
  • C++ Templates

Shallow Copy and Deep Copy in C++

In general, creating a copy of an object means to create an exact replica of the object having the same literal value, data type , and resources. There are two ways that are used by C++ compiler to create a copy of objects.

  • Copy Constructor
  • Assignment Operator

Depending upon the resources like dynamic memory held by the object, either we need to perform Shallow Copy or Deep Copy in order to create a replica of the object. In general, if the variables of an object have been dynamically allocated, then it is required to do a Deep Copy in order to create a copy of the object but one may wonder what is the shallow copy and deep copy? Don’t worry, GeeksforGeeks got you covered.

In this article, we will learn what is shallow copy, what is deep copy, how they are different from each other, where they happen by default and where we need one over another.

What is Shallow Copy?

In shallow copy, an object is created by simply copying the data of all variables of the original object. This works well if none of the variables of the object are defined in the heap section of memory but if some variables are dynamically allocated memory from heap section, then the copied object variable will also reference the same memory location.

This will create ambiguity and run-time errors, dangling pointer. Since both objects will reference to the same memory location, then change made by one will reflect those change in another object as well. Since we wanted to create a replica of the object, this purpose will not be filled by Shallow copy. 

Note: C++ compiler implicitly creates a copy constructor and overloads assignment operator in order to perform shallow copy at compile time.

Consider the below objects B1 and B2, having integer data members representing dimensions of a 3d box.

shallow-copy-in-cpp-1

Now imagine one of the members is a pointer to the integer variable. Here, the shallow copy will only copy the address stored in the pointer leading both the object member pointing to the same object.

shalllow-in-cpp-2

Below is the implementation of the above example:

What is Deep Copy?

In Deep copy, an object is created by copying data of all variables, and it also allocates similar memory resources with the same value to the object. In order to perform Deep copy, we need to explicitly define the copy constructor and assign dynamic memory as well, if required. Also, it is required to dynamically allocate memory to the variables in the other constructors, as well.

Consider the previous example again. If we deep copy the object, then each object will have their own copy of the data pointed by the breadth pointer.

deep-copy-in-cpp

Difference between the Shallow Copy and Deep Copy

The below table list the differences between the shallow copy and the deep copy in the tabular form:

 S.No.
When we create a copy of object by copying data of all member variables as it is, then it is called shallow copy When we create an object by copying data of another object along with the values of memory resources that reside outside the object, then it is called a deep copy
A shallow copy of an object copies all of the member field values. Deep copy is performed by implementing our own copy constructor.
In shallow copy, the two objects are not independentIt copies all fields, and makes copies of dynamically allocated memory pointed to by the fields
It also creates a copy of the dynamically allocated objectsIf we do not create the deep copy in a rightful way then the copy will point to the original, with disastrous consequences.

Please Login to comment...

Similar reads.

  • cpp-constructor

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

C++ At Work

Copy Constructors, Assignment Operators, and More

Paul DiLascia

Code download available at: CAtWork0509.exe (276 KB) Browse the Code Online

Q I have a simple C++ problem. I want my copy constructor and assignment operator to do the same thing. Can you tell me the best way to accomplish this?

A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=.

Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so:

This code works fine for many classes, but there's more here than meets the eye. In particular, what happens if your class contains instances of other classes as members? To find out, I wrote the test program in Figure 1 . It has a main class, CMainClass, which contains an instance of another class, CMember. Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. To exercise the constructors, cctest first creates an instance of CMainClass using the default ctor, then creates another instance using the copy constructor:

Figure 1 Copy Constructors and Assignment Operators

If you compile and run cctest, you'll see the following printf messages when cctest constructs obj2:

The member object m_obj got initialized twice! First by the default constructor, and again via assignment. Hey, what's going on?

In C++, assignment and copy construction are different because the copy constructor initializes uninitialized memory, whereas assignment starts with an existing initialized object. If your class contains instances of other classes as data members, the copy constructor must first construct these data members before it calls operator=. The result is that these members get initialized twice, as cctest shows. Got it? It's the same thing that happens with the default constructor when you initialize members using assignment instead of initializers. For example:

As opposed to:

Using assignment, m_obj is initialized twice; with the initializer syntax, only once. So, what's the solution to avoid extra initializations during copy construction? While it goes against your instinct to reuse code, this is one situation where it's best to implement your copy constructor and assignment operator separately, even if they do the same thing. Calling operator= from your copy constructor will certainly work, but it's not the most efficient implementation. My observation about initializers suggests a better way:

Now the main copy ctor calls the member object's copy ctor using an initializer, and m_obj is initialized just once by its copy ctor. In general, copy ctors should invoke the copy ctors of their members. Likewise for assignment. And, I may as well add, the same goes for base classes: your derived copy ctor and assignment operators should invoke the corresponding base class methods. Of course, there are always times when you may want to do something different because you know how your code works—but what I've described are the general rules, which are to be broken only when you have a compelling reason. If you have common tasks to perform after the basic objects have been initialized, you can put them in a common initialization method and call it from your constructors and operator=.

Q Can you tell me how to call a Visual C++® class from C#, and what syntax I need to use for this?

Sunil Peddi

Q I have an application that is written in both C# (the GUI) and in classic C++ (some business logic). Now I need to call from a DLL written in C++ a function (or a method) in a DLL written in Visual C++ .NET. This one calls another DLL written in C#. The Visual C++ .NET DLL acts like a proxy. Is this possible? I was able to use LoadLibrary to call a function present in the Visual C++ .NET DLL, and I can receive a return value, but when I try to pass some parameters to the function in the Visual C++ .NET DLL, I get the following error:

How can I resolve this problem?

Giuseppe Dattilo

A I get a lot of questions about interoperability between the Microsoft® .NET Framework and native C++, so I don't mind revisiting this well-covered topic yet again. There are two directions you can go: calling the Framework from C++ or calling C++ from the Framework. I won't go into COM interop here as that's a separate issue best saved for another day.

Let's start with the easiest one first: calling the Framework from C++. The simplest and easiest way to call the Framework from your C++ program is to use the Managed Extensions. These Microsoft-specific C++ language extensions are designed to make calling the Framework as easy as including a couple of files and then using the classes as if they were written in C++. Here's a very simple C++ program that calls the Framework's Console class:

To use the Managed Extensions, all you need to do is import <mscorlib.dll> and whatever .NET assemblies contain the classes you plan to use. Don't forget to compile with /clr:

Your C++ code can use managed classes more or less as if they were ordinary C++ classes. For example, you can create Framework objects with operator new, and access them using C++ pointer syntax, as shown in the following:

Here, the String s is declared as pointer-to-String because String::Format returns a new String object.

The "Hello, world" and date/time programs seem childishly simple—and they are—but just remember that however complex your program is, however many .NET assemblies and classes you use, the basic idea is the same: use <mscorlib.dll> and whatever other assemblies you need, then create managed objects with new, and use pointer syntax to access them.

So much for calling the Framework from C++. What about going the other way, calling C++ from the Framework? Here the road forks into two options, depending on whether you want to call extern C functions or C++ class member functions. Again, I'll take the simpler case first: calling C functions from .NET. The easiest thing to do here is use P/Invoke. With P/Invoke, you declare the external functions as static methods of a class, using the DllImport attribute to specify that the function lives in an external DLL. In C# it looks like this:

This tells the compiler that MessageBox is a function in user32.dll that takes an IntPtr (HWND), two Strings, and an int. You can then call it from your C# program like so:

Of course, you don't need P/Invoke for MessageBox since the .NET Framework already has a MessageBox class, but there are plenty of API functions that aren't supported directly by the Framework, and then you need P/Invoke. And, of course, you can use P/Invoke to call C functions in your own DLLs. I've used C# in the example, but P/Invoke works with any .NET-based language like Visual Basic® .NET or JScript®.NET. The names are the same, only the syntax is different.

Note that I used IntPtr to declare the HWND. I could have got away with int, but you should always use IntPtr for any kind of handle such as HWND, HANDLE, or HDC. IntPtr will default to 32 or 64 bits depending on the platform, so you never have to worry about the size of the handle.

DllImport has various modifiers you can use to specify details about the imported function. In this example, CharSet=CharSet.Auto tells the Framework to pass Strings as Unicode or Ansi, depending on the target operating system. Another little-known modifier you can use is CallingConvention. Recall that in C, there are different calling conventions, which are the rules that specify how the compiler should pass arguments and return values from one function to another across the stack. The default CallingConvention for DllImport is CallingConvention.Winapi. This is actually a pseudo-convention that uses the default convention for the target platform; for example, StdCall (in which the callee cleans the stack) on Windows® platforms and CDecl (in which the caller cleans the stack) on Windows CE .NET. CDecl is also used with varargs functions like printf.

The calling convention is where Giuseppe ran into trouble. C++ uses yet a third calling convention: thiscall. With this convention, the compiler uses the hardware register ECX to pass the "this" pointer to class member functions that don't have variable arguments. Without knowing the exact details of Giuseppe's program, it sounds from the error message that he's trying to call a C++ member function that expects thiscall from a C# program that's using StdCall—oops!

Aside from calling conventions, another interoperability issue when calling C++ methods from the Framework is linkage: C and C++ use different forms of linkage because C++ requires name-mangling to support function overloading. That's why you have to use extern "C" when you declare C functions in C++ programs: so the compiler won't mangle the name. In Windows, the entire windows.h file (now winuser.h) is enclosed in extern "C" brackets.

While there may be a way to call C++ member functions in a DLL directly using P/Invoke and DllImport with the exact mangled names and CallingConvention=ThisCall, it's not something to attempt if you're in your right mind. The proper way to call C++ classes from managed code—option number two—is to wrap your C++ classes in managed wrappers. Wrapping can be tedious if you have lots of classes, but it's really the only way to go. Say you have a C++ class CWidget and you want to wrap it so .NET clients can use it. The basic formula looks something like this:

The pattern is the same for any class. You write a managed (__gc) class that holds a pointer to the native class, you write a constructor and destructor that allocate and destroy the instance, and you write wrapper methods that call the corresponding native C++ member functions. You don't have to wrap all the member functions, only the ones you want to expose to the managed world.

Figure 2 shows a simple but concrete example in full detail. CPerson is a class that holds the name of a person, with member functions GetName and SetName to change the name. Figure 3 shows the managed wrapper for CPerson. In the example, I converted Get/SetName to a property, so .NET-based programmers can use the property syntax. In C#, using it looks like this:

Figure 3 Managed Person Class

Figure 2 Native CPerson Class

Using properties is purely a matter of style; I could equally well have exposed two methods, GetName and SetName, as in the native class. But properties feel more like .NET. The wrapper class is an assembly like any other, but one that links with the native DLL. This is one of the cool benefits of the Managed Extensions: You can link directly with native C/C++ code. If you download and compile the source for my CPerson example, you'll see that the makefile generates two separate DLLs: person.dll implements a normal native DLL and mperson.dll is the managed assembly that wraps it. There are also two test programs: testcpp.exe, a native C++ program that calls the native person.dll and testcs.exe, which is written in C# and calls the managed wrapper mperson.dll (which in turn calls the native person.dll).

Figure 4** Interop Highway **

I've used a very simple example to highlight the fact that there are fundamentally only a few main highways across the border between the managed and native worlds (see Figure 4 ). If your C++ classes are at all complex, the biggest interop problem you'll encounter is converting parameters between native and managed types, a process called marshaling. The Managed Extensions do an admirable job of making this as painless as possible (for example, automatically converting primitive types and Strings), but there are times where you have to know something about what you're doing.

For example, you can't pass the address of a managed object or subobject to a native function without pinning it first. That's because managed objects live in the managed heap, which the garbage collector is free to rearrange. If the garbage collector moves an object, it can update all the managed references to that object—but it knows nothing of raw native pointers that live outside the managed world. That's what __pin is for; it tells the garbage collector: don't move this object. For strings, the Framework has a special function PtrToStringChars that returns a pinned pointer to the native characters. (Incidentally, for those curious-minded souls, PtrToStringChars is the only function as of this date defined in <vcclr.h>. Figure 5 shows the code.) I used PtrToStringChars in MPerson to set the Name (see Figure 3 ).

Figure 5 PtrToStringChars

Pinning isn't the only interop problem you'll encounter. Other problems arise if you have to deal with arrays, references, structs, and callbacks, or access a subobject within an object. This is where some of the more advanced techniques come in, such as StructLayout, boxing, __value types, and so on. You also need special code to handle exceptions (native or managed) and callbacks/delegates. But don't let these interop details obscure the big picture. First decide which way you're calling (from managed to native or the other way around), and if you're calling from managed to native, whether to use P/Invoke or a wrapper.

In Visual Studio® 2005 (which some of you may already have as beta bits), the Managed Extensions have been renamed and upgraded to something called C++/CLI. Think of the C++/CLI as Managed Extensions Version 2, or What the Managed Extensions Should Have Been. The changes are mostly a matter of syntax, though there are some important semantic changes, too. In general C++/CLI is designed to highlight rather than blur the distinction between managed and native objects. Using pointer syntax for managed objects was a clever and elegant idea, but in the end perhaps a little too clever because it obscures important differences between managed and native objects. C++/CLI introduces the key notion of handles for managed objects, so instead of using C pointer syntax for managed objects, the CLI uses ^ (hat):

As you no doubt noticed, there's also a gcnew operator to clarify when you're allocating objects on the managed heap as opposed to the native one. This has the added benefit that gcnew doesn't collide with C++ new, which can be overloaded or even redefined as a macro. C++/CLI has many other cool features designed to make interoperability as straightforward and intuitive as possible.

Send your questions and comments for Paul to   [email protected] .

Paul DiLascia is a freelance software consultant and Web/UI designer-at-large. He is the author of Windows ++: Writing Reusable Windows Code in C ++ (Addison-Wesley, 1992). In his spare time, Paul develops PixieLib, an MFC class library available from his Web site, www.dilascia.com .

Additional resources

22.3 — Move constructors and move assignment

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Does the assignment operator call copy constructor?

Here inside main(), test c=a calls the copy constructor and allocates memory for the integer. No problem with that, both c.p and a.p point to different memory locations. But the line b=a causes b.p and a.p to point to the same memory location. I have created my own copy constructor, b.p and a.p should have pointed to different memory locations. What's going on here? Edit: To be precise, my question is what's the difference between implicitly-defined copy constructor and implicitly-defined copy assignment operator?

srilakshmikanthanp's user avatar

  • Does this answer your question? What is The Rule of Three? –  Karsten Koop Commented Mar 16, 2020 at 10:55
  • 4 Assignment a=b does not invoke the the copy-ctor. You will need to overload operator= for that. –  Lukas-T Commented Mar 16, 2020 at 10:56
  • memory leaks in p=new int(a); you must delete OLD p if it has a valid memory –  Landstalker Commented Mar 16, 2020 at 10:56
  • What if test a; a.show(); ? –  Jose Commented Mar 16, 2020 at 10:57
  • The value of the original int is not copied into the copy. –  Surt Commented Mar 16, 2020 at 10:57

5 Answers 5

Here also bit by bit copy is done (a.p and b.p pointing to same location), it does not invoke copy constructor because constructor is called when b in defined (default constructor).so you have to overload = operator

Add this to your class test and you need to check the memory is allocated or not by new because new can fail to allocate requested memory.

But here the copy constructor is called

  • You do not want to pass src by value. this->p=src.p; would make b.p point to the same memory as a.p and that will crash when both want to delete it in the destructor, it also creates a memory leak for a.p as you are overwriting the pointer. Do you mean *this->p=*src.p; ? –  mch Commented Mar 16, 2020 at 11:10
  • @mch sorry for the mistake i did not note it , i would corrected it.Thanks –  srilakshmikanthanp Commented Mar 16, 2020 at 11:27

If you really want to use an *int, I'd use smart pointers, to simplify the resource ownership:

however, it does not make too much sense to use a pointer or smart pointers (obfuscated code) considering that the lifespan of the int is the same than the object itself (so you don't have to dynamically allocate it):

Jose's user avatar

  • 1 This will create a memory leak for this->p . –  mch Commented Mar 16, 2020 at 11:11
  • you will do delete p in new instance destructor –  Landstalker Commented Mar 16, 2020 at 11:12
  • operator= is not for new instances. Both instances are fully constructed, so both have a valid pointer p and you overwrite the one from the left side. It has nothing to do with the destructor, the destructor cannot call delete on an overwritten pointer. –  mch Commented Mar 16, 2020 at 11:13
  • @mch ok, I thought it was only for new instances, thanks for the remark. (Edited) –  Landstalker Commented Mar 16, 2020 at 11:24
  • 1 Firstly, you don't need if (NULL != this->p) : if p is null, delete p safely does nothing. Secondly, why this->p ? Simply p is enough. Thirdly, it's nullptr these days, not NULL . In summary: delete p; p = new etc. –  TonyK Commented Mar 16, 2020 at 11:56

I dont know why, but if I:

instead of :

a.p and b.p point to different addresses

platinoob_'s user avatar

  • If you don't know why it works it's no answer, is it? –  Lukas-T Commented Mar 17, 2020 at 6:45
  • @churill you are correct, and probably I need to learn more about "=", but, the person who made this question might be in hurry, and I do not think that declare b at the time of its initialisation it's that much of a difference, it might be good enough for the "questioner", and later the "questioner" might search the reason the code in my answer works of its own –  platinoob_ Commented Mar 17, 2020 at 8:01

You need to define operator=. The copy constructor won't be called for an already-constructed object.

C. Dunn's user avatar

  • 2 This will create a memory leak for this->p . You can pass t as const test & . –  mch Commented Mar 16, 2020 at 11:12

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

  • The Overflow Blog
  • Battling ticket bots and untangling taxes at the frontiers of e-commerce
  • Ryan Dahl explains why Deno had to evolve with version 2.0
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites
  • Feedback requested: How do you use tag hover descriptions for curating and do...

Hot Network Questions

  • Teaching my university course on Udemy
  • Can science inform philosophy?
  • Did anyone ever ask Neil Armstrong whether he said "for man" or "for a man?"
  • Could a gas giant still be low on the horizon from the equator of a tidally locked moon?
  • GNU grep: This manpage is not compatible with mandoc
  • Has any spacecraft ever been severely damaged by a micrometeriote?
  • Finite loop runs infinitely
  • Is sudoku only one puzzle?
  • Using 尊敬語 and 謙譲語 without 丁寧語?
  • For applying to a STEM research position at a U.S. research university, should a resume include a photo?
  • Font showing in Pages but not in Font book (or other apps)
  • What do all branches of Mathematics have in common to be considered "Mathematics", or parts of the same field?
  • Who is affected by Obscured areas?
  • Is there a grammatical term for the ways in which 'to be' is used in these sentences?
  • Large Sapient Octopus: How could they survive in warm waters?
  • Is "UN law" a thing?
  • Do spell-like abilities have descriptors?
  • Is the oil level here too high that it needs to be drained or can I leave it?
  • Optimal Algorithm to Append and Access Tree Data
  • Adverb for Lore?
  • How old were Phineas and Ferb? What year was it?
  • What's the sales pitch for waxing chains?
  • Problem with enumeration in Texlive 2023
  • Are epochs the same as data duplication?

what is difference between copy constructor and assignment operator

IMAGES

  1. Copy Constructor vs Assignment Operator,Difference between Copy Constructor and Assignment Operator

    what is difference between copy constructor and assignment operator

  2. Difference between copy constructor and assignment operator in c++

    what is difference between copy constructor and assignment operator

  3. Difference between copy constructor and assignment operator in C++ (OOP tutorial for beginners)

    what is difference between copy constructor and assignment operator

  4. What is the Difference Between Copy Constructor and Assignment Operator

    what is difference between copy constructor and assignment operator

  5. Difference between Copy Constructor and Assignment Operator,Copy

    what is difference between copy constructor and assignment operator

  6. Difference Between Copy Constructor and Assignment Operator in C++

    what is difference between copy constructor and assignment operator

COMMENTS

  1. Copy Constructor vs Assignment Operator in C++

    But, there are some basic differences between them: Copy constructor. Assignment operator. It is called when a new object is created from an existing object, as a copy of the existing object. This operator is called when an already initialized object is assigned a new value from another existing object. It creates a separate memory block for ...

  2. What's the difference between assignment operator and copy constructor?

    6. the difference between a copy constructor and an assignment constructor is: In case of a copy constructor it creates a new object. ( <classname> <o1>=<o2>) In case of an assignment constructor it will not create any object means it apply on already created objects ( <o1>=<o2> ).

  3. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  4. Difference Between Copy Constructor and Assignment Operator in C++

    Copy constructor and assignment operator, are the two ways to initialize one object using another object. The fundamental difference between the copy constructor and assignment operator is that the copy constructor allocates separate memory to both the objects, i.e. the newly created target object and the source object. The assignment operator allocates the same memory location to the newly ...

  5. Difference Between Copy Constructor and Assignment Operator in C++

    The difference between a copy constructor and an assignment operator is that a copy constructor helps to create a copy of an already existing object without altering the original value of the created object, whereas an assignment operator helps to assign a new value to a data member or an object in the program. Kiran Kumar Panigrahi.

  6. Copy Constructor in C++

    Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them: Copy constructor Assignment operator It is called when a new object is created from an existing object, as a copy of the existing objectThis operator is called when an already

  7. Copy constructor vs assignment operator in C++

    The Copy constructor and the assignment operators are used to initializing one object to another object. The main difference between them is that the copy constructor creates a separate memory block for the new object. But the assignment operator does not make new memory space. It uses the reference variable to point to the previous memory block.

  8. Copy constructors

    The copy constructor is called whenever an object is initialized(by direct-initializationor copy-initialization) from another object of the same type (unless overload resolutionselects a better match or the call is elided), which includes. initialization: T a =b;or T a(b);, where bis of type T;

  9. What is the Difference Between Copy Constructor and Assignment Operator

    The difference between copy constructor and assignment operator is that copy constructor is a type of constructor that helps to create a copy of an already existing object without affecting the values of the original object while assignment operator is an operator that helps to assign a new value to a variable in the program. Reference: 1.

  10. Copy constructors, assignment operators,

    Here's where the difference between exception handling and exception safety is important: we haven't prevented an exception from occurring; indeed, ... in either T's copy constructor or assignment operator throwing, you are politely required to provide a swap() overload for your type that does not

  11. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  12. Copy Constructors and Assignment Operators

    Note that the difference between the copy constructor and assignment operator above is that the copy constructor can assume that fields of the object have not been set yet (because the object is just being constructed). However, the assignment operator must handle the case when the fields already have valid values.

  13. 21.12

    The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it's really not all that difficult. Summarizing: If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).

  14. The distinction between the C++ copy constructor and assignment operator

    All of these C++ concepts' primary functions are to assign values, but the key distinction between them is that while the copy constructor produces a new object and assigns the value, the assignment operator assigns the value to the data member of the same object rather than to a new object. The key distinctions between assignment operator and ...

  15. assignment operator vs. copy constructor C++

    The copy constructor is not used during assignment. Copy constructor in your case is used when passing arguments to displayInteger ... the rule of three is replaced by the "Rule of Five". That means that in addition to a copy constructor, destructor, (copy) assignment operator, now also a move constructor and move assignment operator should be ...

  16. Shallow Copy and Deep Copy in C++

    Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them: Copy constructor Assignment operator It is called when a new object is created from an existing object, as a copy of the existing objectThis operator is called when an already

  17. C++ at Work: Copy Constructors, Assignment Operators, and More

    Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. ... but in the end perhaps a little too clever because it obscures important differences between managed and native ...

  18. 22.3

    C++11 defines two new functions in service of move semantics: a move constructor, and a move assignment operator. Whereas the goal of the copy constructor and copy assignment is to make a copy of one object to another, the goal of the move constructor and move assignment is to move ownership of the resources from one object to another (which is typically much less expensive than making a copy).

  19. Difference between Copy Constructor and Assignment Operator?

    The copy constructor is used when you create a new object, specifying an object to copy, so. MyClass b(a); ( MyClass b = a; is the same) Uses the copy constructor. The assignment operator changes the value of an existing object, so in your case: MyClass b; Creates b and. b = a; uses the assignment operator, which you haven't defined.

  20. c++

    What is the difference between the functionality of a copy constructor and an Assignment operator. Difference is that copy ctor constructs new object with a copy of existing one, assignment operator overrides fully constructed object with a copy. For example if you have a raw pointer to dynamically allocated memory in your class - copy ctor ...

  21. Does the assignment operator call copy constructor?

    Here also bit by bit copy is done (a.p and b.p pointing to same location), it does not invoke copy constructor because constructor is called when b in defined (default constructor).so you have to overload = operator. test &operator =(const test &src) {. *this->p=*src.p; //copy value not address. return *this;