We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essays Samples >
  • Essay Types >
  • Research Proposal Example

Air Pollution Research Proposals Samples For Students

7 samples of this type

Do you feel the need to examine some previously written Research Proposals on Air Pollution before you get down to writing an own piece? In this free database of Air Pollution Research Proposal examples, you are provided with a thrilling opportunity to examine meaningful topics, content structuring techniques, text flow, formatting styles, and other academically acclaimed writing practices. Using them while composing your own Air Pollution Research Proposal will surely allow you to finish the piece faster.

Presenting the finest samples isn't the only way our free essays service can help students in their writing efforts – our authors can also compose from point zero a fully customized Research Proposal on Air Pollution that would make a genuine foundation for your own academic work.

Sample Research Proposal On Environmental Impact From Sea Transport From A Life Cycle Perspective

Introduction, climate change and humanity’s contribution to it research proposal example, free air purifiers research proposal sample, introduction:.

Don't waste your time searching for a sample.

Get your research proposal done by professional writers!

Just from $10/page

Environmental And Health Dangers Of Fracking: A Sample Research Proposal For Inspiration & Mimicking

The extraction of natural gas has been a common trend in the United States. With the advancement in technology, a lot of types of machinery, cars, and other equipment have been designed, and all of them require the use of oil and gas. Hence, various companies have ventured in hydraulic fracking in the hope of producing more oil and gas. However, the hydraulic fracking itself brings environmental and health dangers.

This paper seeks to answer the following research questions:

Political science empirical research question on climate change part ii research proposals example, research question discussion, research proposal on factory farming, peter singer’s position on factory farming, energy resource plan research proposal, environmental science.

Energy Resource Plan Introduction

Energy conservation is important to the environment. You have probably heard that said on television and read it in the headlines a million times but you may not have thought about what it means for your family. The environment needs to be clean for our families. Less air pollution in the atmosphere means healthier kids and less asthma.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

An official website of the United States government

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

Environmental and Health Impacts of Air Pollution: A Review

Ioannis manisalidis, elisavet stavropoulou, agathangelos stavropoulos, eugenia bezirtzoglou.

  • Author information
  • Article notes
  • Copyright and License information

Edited by: Ethel Eljarrat, Institute of Environmental Assessment and Water Research (CSIC), Spain

Reviewed by: Fei Li, Zhongnan University of Economics and Law, China; M. Jahangir Alam, University of Houston, United States

*Correspondence: Ioannis Manisalidis [email protected]

Elisavet Stavropoulou [email protected]

This article was submitted to Environmental Health, a section of the journal Frontiers in Public Health

†These authors have contributed equally to this work

Received 2019 Oct 17; Accepted 2020 Jan 17; Collection date 2020.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

Keywords: air pollution, environment, health, public health, gas emission, policy

Approach to the Problem

The interactions between humans and their physical surroundings have been extensively studied, as multiple human activities influence the environment. The environment is a coupling of the biotic (living organisms and microorganisms) and the abiotic (hydrosphere, lithosphere, and atmosphere).

Pollution is defined as the introduction into the environment of substances harmful to humans and other living organisms. Pollutants are harmful solids, liquids, or gases produced in higher than usual concentrations that reduce the quality of our environment.

Human activities have an adverse effect on the environment by polluting the water we drink, the air we breathe, and the soil in which plants grow. Although the industrial revolution was a great success in terms of technology, society, and the provision of multiple services, it also introduced the production of huge quantities of pollutants emitted into the air that are harmful to human health. Without any doubt, the global environmental pollution is considered an international public health issue with multiple facets. Social, economic, and legislative concerns and lifestyle habits are related to this major problem. Clearly, urbanization and industrialization are reaching unprecedented and upsetting proportions worldwide in our era. Anthropogenic air pollution is one of the biggest public health hazards worldwide, given that it accounts for about 9 million deaths per year ( 1 ).

Without a doubt, all of the aforementioned are closely associated with climate change, and in the event of danger, the consequences can be severe for mankind ( 2 ). Climate changes and the effects of global planetary warming seriously affect multiple ecosystems, causing problems such as food safety issues, ice and iceberg melting, animal extinction, and damage to plants ( 3 , 4 ).

Air pollution has various health effects. The health of susceptible and sensitive individuals can be impacted even on low air pollution days. Short-term exposure to air pollutants is closely related to COPD (Chronic Obstructive Pulmonary Disease), cough, shortness of breath, wheezing, asthma, respiratory disease, and high rates of hospitalization (a measurement of morbidity).

The long-term effects associated with air pollution are chronic asthma, pulmonary insufficiency, cardiovascular diseases, and cardiovascular mortality. According to a Swedish cohort study, diabetes seems to be induced after long-term air pollution exposure ( 5 ). Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ).

National reports have mentioned the increased risk of morbidity and mortality ( 1 ). These studies were conducted in many places around the world and show a correlation between daily ranges of particulate matter (PM) concentration and daily mortality. Climate shifts and global planetary warming ( 3 ) could aggravate the situation. Besides, increased hospitalization (an index of morbidity) has been registered among the elderly and susceptible individuals for specific reasons. Fine and ultrafine particulate matter seems to be associated with more serious illnesses ( 6 ), as it can invade the deepest parts of the airways and more easily reach the bloodstream.

Air pollution mainly affects those living in large urban areas, where road emissions contribute the most to the degradation of air quality. There is also a danger of industrial accidents, where the spread of a toxic fog can be fatal to the populations of the surrounding areas. The dispersion of pollutants is determined by many parameters, most notably atmospheric stability and wind ( 6 ).

In developing countries ( 7 ), the problem is more serious due to overpopulation and uncontrolled urbanization along with the development of industrialization. This leads to poor air quality, especially in countries with social disparities and a lack of information on sustainable management of the environment. The use of fuels such as wood fuel or solid fuel for domestic needs due to low incomes exposes people to bad-quality, polluted air at home. It is of note that three billion people around the world are using the above sources of energy for their daily heating and cooking needs ( 8 ). In developing countries, the women of the household seem to carry the highest risk for disease development due to their longer duration exposure to the indoor air pollution ( 8 , 9 ). Due to its fast industrial development and overpopulation, China is one of the Asian countries confronting serious air pollution problems ( 10 , 11 ). The lung cancer mortality observed in China is associated with fine particles ( 12 ). As stated already, long-term exposure is associated with deleterious effects on the cardiovascular system ( 3 , 5 ). However, it is interesting to note that cardiovascular diseases have mostly been observed in developed and high-income countries rather than in the developing low-income countries exposed highly to air pollution ( 13 ). Extreme air pollution is recorded in India, where the air quality reaches hazardous levels. New Delhi is one of the more polluted cities in India. Flights in and out of New Delhi International Airport are often canceled due to the reduced visibility associated with air pollution. Pollution is occurring both in urban and rural areas in India due to the fast industrialization, urbanization, and rise in use of motorcycle transportation. Nevertheless, biomass combustion associated with heating and cooking needs and practices is a major source of household air pollution in India and in Nepal ( 14 , 15 ). There is spatial heterogeneity in India, as areas with diverse climatological conditions and population and education levels generate different indoor air qualities, with higher PM 2.5 observed in North Indian states (557–601 μg/m 3 ) compared to the Southern States (183–214 μg/m 3 ) ( 16 , 17 ). The cold climate of the North Indian areas may be the main reason for this, as longer periods at home and more heating are necessary compared to in the tropical climate of Southern India. Household air pollution in India is associated with major health effects, especially in women and young children, who stay indoors for longer periods. Chronic obstructive respiratory disease (CORD) and lung cancer are mostly observed in women, while acute lower respiratory disease is seen in young children under 5 years of age ( 18 ).

Accumulation of air pollution, especially sulfur dioxide and smoke, reaching 1,500 mg/m3, resulted in an increase in the number of deaths (4,000 deaths) in December 1952 in London and in 1963 in New York City (400 deaths) ( 19 ). An association of pollution with mortality was reported on the basis of monitoring of outdoor pollution in six US metropolitan cities ( 20 ). In every case, it seems that mortality was closely related to the levels of fine, inhalable, and sulfate particles more than with the levels of total particulate pollution, aerosol acidity, sulfur dioxide, or nitrogen dioxide ( 20 ).

Furthermore, extremely high levels of pollution are reported in Mexico City and Rio de Janeiro, followed by Milan, Ankara, Melbourne, Tokyo, and Moscow ( 19 ).

Based on the magnitude of the public health impact, it is certain that different kinds of interventions should be taken into account. Success and effectiveness in controlling air pollution, specifically at the local level, have been reported. Adequate technological means are applied considering the source and the nature of the emission as well as its impact on health and the environment. The importance of point sources and non-point sources of air pollution control is reported by Schwela and Köth-Jahr ( 21 ). Without a doubt, a detailed emission inventory must record all sources in a given area. Beyond considering the above sources and their nature, topography and meteorology should also be considered, as stated previously. Assessment of the control policies and methods is often extrapolated from the local to the regional and then to the global scale. Air pollution may be dispersed and transported from one region to another area located far away. Air pollution management means the reduction to acceptable levels or possible elimination of air pollutants whose presence in the air affects our health or the environmental ecosystem. Private and governmental entities and authorities implement actions to ensure the air quality ( 22 ). Air quality standards and guidelines were adopted for the different pollutants by the WHO and EPA as a tool for the management of air quality ( 1 , 23 ). These standards have to be compared to the emissions inventory standards by causal analysis and dispersion modeling in order to reveal the problematic areas ( 24 ). Inventories are generally based on a combination of direct measurements and emissions modeling ( 24 ).

As an example, we state here the control measures at the source through the use of catalytic converters in cars. These are devices that turn the pollutants and toxic gases produced from combustion engines into less-toxic pollutants by catalysis through redox reactions ( 25 ). In Greece, the use of private cars was restricted by tracking their license plates in order to reduce traffic congestion during rush hour ( 25 ).

Concerning industrial emissions, collectors and closed systems can keep the air pollution to the minimal standards imposed by legislation ( 26 ).

Current strategies to improve air quality require an estimation of the economic value of the benefits gained from proposed programs. These proposed programs by public authorities, and directives are issued with guidelines to be respected.

In Europe, air quality limit values AQLVs (Air Quality Limit Values) are issued for setting off planning claims ( 27 ). In the USA, the NAAQS (National Ambient Air Quality Standards) establish the national air quality limit values ( 27 ). While both standards and directives are based on different mechanisms, significant success has been achieved in the reduction of overall emissions and associated health and environmental effects ( 27 ). The European Directive identifies geographical areas of risk exposure as monitoring/assessment zones to record the emission sources and levels of air pollution ( 27 ), whereas the USA establishes global geographical air quality criteria according to the severity of their air quality problem and records all sources of the pollutants and their precursors ( 27 ).

In this vein, funds have been financing, directly or indirectly, projects related to air quality along with the technical infrastructure to maintain good air quality. These plans focus on an inventory of databases from air quality environmental planning awareness campaigns. Moreover, pollution measures of air emissions may be taken for vehicles, machines, and industries in urban areas.

Technological innovation can only be successful if it is able to meet the needs of society. In this sense, technology must reflect the decision-making practices and procedures of those involved in risk assessment and evaluation and act as a facilitator in providing information and assessments to enable decision makers to make the best decisions possible. Summarizing the aforementioned in order to design an effective air quality control strategy, several aspects must be considered: environmental factors and ambient air quality conditions, engineering factors and air pollutant characteristics, and finally, economic operating costs for technological improvement and administrative and legal costs. Considering the economic factor, competitiveness through neoliberal concepts is offering a solution to environmental problems ( 22 ).

The development of environmental governance, along with technological progress, has initiated the deployment of a dialogue. Environmental politics has created objections and points of opposition between different political parties, scientists, media, and governmental and non-governmental organizations ( 22 ). Radical environmental activism actions and movements have been created ( 22 ). The rise of the new information and communication technologies (ICTs) are many times examined as to whether and in which way they have influenced means of communication and social movements such as activism ( 28 ). Since the 1990s, the term “digital activism” has been used increasingly and in many different disciplines ( 29 ). Nowadays, multiple digital technologies can be used to produce a digital activism outcome on environmental issues. More specifically, devices with online capabilities such as computers or mobile phones are being used as a way to pursue change in political and social affairs ( 30 ).

In the present paper, we focus on the sources of environmental pollution in relation to public health and propose some solutions and interventions that may be of interest to environmental legislators and decision makers.

Sources of Exposure

It is known that the majority of environmental pollutants are emitted through large-scale human activities such as the use of industrial machinery, power-producing stations, combustion engines, and cars. Because these activities are performed at such a large scale, they are by far the major contributors to air pollution, with cars estimated to be responsible for approximately 80% of today's pollution ( 31 ). Some other human activities are also influencing our environment to a lesser extent, such as field cultivation techniques, gas stations, fuel tanks heaters, and cleaning procedures ( 32 ), as well as several natural sources, such as volcanic and soil eruptions and forest fires.

The classification of air pollutants is based mainly on the sources producing pollution. Therefore, it is worth mentioning the four main sources, following the classification system: Major sources, Area sources, Mobile sources, and Natural sources.

Major sources include the emission of pollutants from power stations, refineries, and petrochemicals, the chemical and fertilizer industries, metallurgical and other industrial plants, and, finally, municipal incineration.

Indoor area sources include domestic cleaning activities, dry cleaners, printing shops, and petrol stations.

Mobile sources include automobiles, cars, railways, airways, and other types of vehicles.

Finally, natural sources include, as stated previously, physical disasters ( 33 ) such as forest fire, volcanic erosion, dust storms, and agricultural burning.

However, many classification systems have been proposed. Another type of classification is a grouping according to the recipient of the pollution, as follows:

Air pollution is determined as the presence of pollutants in the air in large quantities for long periods. Air pollutants are dispersed particles, hydrocarbons, CO, CO 2 , NO, NO 2 , SO 3 , etc.

Water pollution is organic and inorganic charge and biological charge ( 10 ) at high levels that affect the water quality ( 34 , 35 ).

Soil pollution occurs through the release of chemicals or the disposal of wastes, such as heavy metals, hydrocarbons, and pesticides.

Air pollution can influence the quality of soil and water bodies by polluting precipitation, falling into water and soil environments ( 34 , 36 ). Notably, the chemistry of the soil can be amended due to acid precipitation by affecting plants, cultures, and water quality ( 37 ). Moreover, movement of heavy metals is favored by soil acidity, and metals are so then moving into the watery environment. It is known that heavy metals such as aluminum are noxious to wildlife and fishes. Soil quality seems to be of importance, as soils with low calcium carbonate levels are at increased jeopardy from acid rain. Over and above rain, snow and particulate matter drip into watery ' bodies ( 36 , 38 ).

Lastly, pollution is classified following type of origin:

Radioactive and nuclear pollution , releasing radioactive and nuclear pollutants into water, air, and soil during nuclear explosions and accidents, from nuclear weapons, and through handling or disposal of radioactive sewage.

Radioactive materials can contaminate surface water bodies and, being noxious to the environment, plants, animals, and humans. It is known that several radioactive substances such as radium and uranium concentrate in the bones and can cause cancers ( 38 , 39 ).

Noise pollution is produced by machines, vehicles, traffic noises, and musical installations that are harmful to our hearing.

The World Health Organization introduced the term DALYs. The DALYs for a disease or health condition is defined as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for people living with the health condition or its consequences ( 39 ). In Europe, air pollution is the main cause of disability-adjusted life years lost (DALYs), followed by noise pollution. The potential relationships of noise and air pollution with health have been studied ( 40 ). The study found that DALYs related to noise were more important than those related to air pollution, as the effects of environmental noise on cardiovascular disease were independent of air pollution ( 40 ). Environmental noise should be counted as an independent public health risk ( 40 ).

Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, etc.) are produced.

Pollutants harm our environment either by increasing levels above normal or by introducing harmful toxic substances. Primary pollutants are directly produced from the above sources, and secondary pollutants are emitted as by-products of the primary ones. Pollutants can be biodegradable or non-biodegradable and of natural origin or anthropogenic, as stated previously. Moreover, their origin can be a unique source (point-source) or dispersed sources.

Pollutants have differences in physical and chemical properties, explaining the discrepancy in their capacity for producing toxic effects. As an example, we state here that aerosol compounds ( 41 – 43 ) have a greater toxicity than gaseous compounds due to their tiny size (solid or liquid) in the atmosphere; they have a greater penetration capacity. Gaseous compounds are eliminated more easily by our respiratory system ( 41 ). These particles are able to damage lungs and can even enter the bloodstream ( 41 ), leading to the premature deaths of millions of people yearly. Moreover, the aerosol acidity ([H+]) seems to considerably enhance the production of secondary organic aerosols (SOA), but this last aspect is not supported by other scientific teams ( 38 ).

Climate and Pollution

Air pollution and climate change are closely related. Climate is the other side of the same coin that reduces the quality of our Earth ( 44 ). Pollutants such as black carbon, methane, tropospheric ozone, and aerosols affect the amount of incoming sunlight. As a result, the temperature of the Earth is increasing, resulting in the melting of ice, icebergs, and glaciers.

In this vein, climatic changes will affect the incidence and prevalence of both residual and imported infections in Europe. Climate and weather affect the duration, timing, and intensity of outbreaks strongly and change the map of infectious diseases in the globe ( 45 ). Mosquito-transmitted parasitic or viral diseases are extremely climate-sensitive, as warming firstly shortens the pathogen incubation period and secondly shifts the geographic map of the vector. Similarly, water-warming following climate changes leads to a high incidence of waterborne infections. Recently, in Europe, eradicated diseases seem to be emerging due to the migration of population, for example, cholera, poliomyelitis, tick-borne encephalitis, and malaria ( 46 ).

The spread of epidemics is associated with natural climate disasters and storms, which seem to occur more frequently nowadays ( 47 ). Malnutrition and disequilibration of the immune system are also associated with the emerging infections affecting public health ( 48 ).

The Chikungunya virus “took the airplane” from the Indian Ocean to Europe, as outbreaks of the disease were registered in Italy ( 49 ) as well as autochthonous cases in France ( 50 ).

An increase in cryptosporidiosis in the United Kingdom and in the Czech Republic seems to have occurred following flooding ( 36 , 51 ).

As stated previously, aerosols compounds are tiny in size and considerably affect the climate. They are able to dissipate sunlight (the albedo phenomenon) by dispersing a quarter of the sun's rays back to space and have cooled the global temperature over the last 30 years ( 52 ).

Air Pollutants

The World Health Organization (WHO) reports on six major air pollutants, namely particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Air pollution can have a disastrous effect on all components of the environment, including groundwater, soil, and air. Additionally, it poses a serious threat to living organisms. In this vein, our interest is mainly to focus on these pollutants, as they are related to more extensive and severe problems in human health and environmental impact. Acid rain, global warming, the greenhouse effect, and climate changes have an important ecological impact on air pollution ( 53 ).

Particulate Matter (PM) and Health

Studies have shown a relationship between particulate matter (PM) and adverse health effects, focusing on either short-term (acute) or long-term (chronic) PM exposure.

Particulate matter (PM) is usually formed in the atmosphere as a result of chemical reactions between the different pollutants. The penetration of particles is closely dependent on their size ( 53 ). Particulate Matter (PM) was defined as a term for particles by the United States Environmental Protection Agency ( 54 ). Particulate matter (PM) pollution includes particles with diameters of 10 micrometers (μm) or smaller, called PM 10 , and extremely fine particles with diameters that are generally 2.5 micrometers (μm) and smaller.

Particulate matter contains tiny liquid or solid droplets that can be inhaled and cause serious health effects ( 55 ). Particles <10 μm in diameter (PM 10 ) after inhalation can invade the lungs and even reach the bloodstream. Fine particles, PM 2.5 , pose a greater risk to health ( 6 , 56 ) ( Table 1 ).

Penetrability according to particle size.

Multiple epidemiological studies have been performed on the health effects of PM. A positive relation was shown between both short-term and long-term exposures of PM 2.5 and acute nasopharyngitis ( 56 ). In addition, long-term exposure to PM for years was found to be related to cardiovascular diseases and infant mortality.

Those studies depend on PM 2.5 monitors and are restricted in terms of study area or city area due to a lack of spatially resolved daily PM 2.5 concentration data and, in this way, are not representative of the entire population. Following a recent epidemiological study by the Department of Environmental Health at Harvard School of Public Health (Boston, MA) ( 57 ), it was reported that, as PM 2.5 concentrations vary spatially, an exposure error (Berkson error) seems to be produced, and the relative magnitudes of the short- and long-term effects are not yet completely elucidated. The team developed a PM 2.5 exposure model based on remote sensing data for assessing short- and long-term human exposures ( 57 ). This model permits spatial resolution in short-term effects plus the assessment of long-term effects in the whole population.

Moreover, respiratory diseases and affection of the immune system are registered as long-term chronic effects ( 58 ). It is worth noting that people with asthma, pneumonia, diabetes, and respiratory and cardiovascular diseases are especially susceptible and vulnerable to the effects of PM. PM 2.5 , followed by PM 10 , are strongly associated with diverse respiratory system diseases ( 59 ), as their size permits them to pierce interior spaces ( 60 ). The particles produce toxic effects according to their chemical and physical properties. The components of PM 10 and PM 2.5 can be organic (polycyclic aromatic hydrocarbons, dioxins, benzene, 1-3 butadiene) or inorganic (carbon, chlorides, nitrates, sulfates, metals) in nature ( 55 ).

Particulate Matter (PM) is divided into four main categories according to type and size ( 61 ) ( Table 2 ).

Types and sizes of particulate Matter (PM).

Gas contaminants include PM in aerial masses.

Particulate contaminants include contaminants such as smog, soot, tobacco smoke, oil smoke, fly ash, and cement dust.

Biological Contaminants are microorganisms (bacteria, viruses, fungi, mold, and bacterial spores), cat allergens, house dust and allergens, and pollen.

Types of Dust include suspended atmospheric dust, settling dust, and heavy dust.

Finally, another fact is that the half-lives of PM 10 and PM 2.5 particles in the atmosphere is extended due to their tiny dimensions; this permits their long-lasting suspension in the atmosphere and even their transfer and spread to distant destinations where people and the environment may be exposed to the same magnitude of pollution ( 53 ). They are able to change the nutrient balance in watery ecosystems, damage forests and crops, and acidify water bodies.

As stated, PM 2.5 , due to their tiny size, are causing more serious health effects. These aforementioned fine particles are the main cause of the “haze” formation in different metropolitan areas ( 12 , 13 , 61 ).

Ozone Impact in the Atmosphere

Ozone (O 3 ) is a gas formed from oxygen under high voltage electric discharge ( 62 ). It is a strong oxidant, 52% stronger than chlorine. It arises in the stratosphere, but it could also arise following chain reactions of photochemical smog in the troposphere ( 63 ).

Ozone can travel to distant areas from its initial source, moving with air masses ( 64 ). It is surprising that ozone levels over cities are low in contrast to the increased amounts occuring in urban areas, which could become harmful for cultures, forests, and vegetation ( 65 ) as it is reducing carbon assimilation ( 66 ). Ozone reduces growth and yield ( 47 , 48 ) and affects the plant microflora due to its antimicrobial capacity ( 67 , 68 ). In this regard, ozone acts upon other natural ecosystems, with microflora ( 69 , 70 ) and animal species changing their species composition ( 71 ). Ozone increases DNA damage in epidermal keratinocytes and leads to impaired cellular function ( 72 ).

Ground-level ozone (GLO) is generated through a chemical reaction between oxides of nitrogen and VOCs emitted from natural sources and/or following anthropogenic activities.

Ozone uptake usually occurs by inhalation. Ozone affects the upper layers of the skin and the tear ducts ( 73 ). A study of short-term exposure of mice to high levels of ozone showed malondialdehyde formation in the upper skin (epidermis) but also depletion in vitamins C and E. It is likely that ozone levels are not interfering with the skin barrier function and integrity to predispose to skin disease ( 74 ).

Due to the low water-solubility of ozone, inhaled ozone has the capacity to penetrate deeply into the lungs ( 75 ).

Toxic effects induced by ozone are registered in urban areas all over the world, causing biochemical, morphologic, functional, and immunological disorders ( 76 ).

The European project (APHEA2) focuses on the acute effects of ambient ozone concentrations on mortality ( 77 ). Daily ozone concentrations compared to the daily number of deaths were reported from different European cities for a 3-year period. During the warm period of the year, an observed increase in ozone concentration was associated with an increase in the daily number of deaths (0.33%), in the number of respiratory deaths (1.13%), and in the number of cardiovascular deaths (0.45%). No effect was observed during wintertime.

Carbon Monoxide (CO)

Carbon monoxide is produced by fossil fuel when combustion is incomplete. The symptoms of poisoning due to inhaling carbon monoxide include headache, dizziness, weakness, nausea, vomiting, and, finally, loss of consciousness.

The affinity of carbon monoxide to hemoglobin is much greater than that of oxygen. In this vein, serious poisoning may occur in people exposed to high levels of carbon monoxide for a long period of time. Due to the loss of oxygen as a result of the competitive binding of carbon monoxide, hypoxia, ischemia, and cardiovascular disease are observed.

Carbon monoxide affects the greenhouses gases that are tightly connected to global warming and climate. This should lead to an increase in soil and water temperatures, and extreme weather conditions or storms may occur ( 68 ).

However, in laboratory and field experiments, it has been seen to produce increased plant growth ( 78 ).

Nitrogen Oxide (NO 2 )

Nitrogen oxide is a traffic-related pollutant, as it is emitted from automobile motor engines ( 79 , 80 ). It is an irritant of the respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems that concentrations over 0.2 ppm produce these adverse effects in humans, while concentrations higher than 2.0 ppm affect T-lymphocytes, particularly the CD8+ cells and NK cells that produce our immune response ( 81 ).It is reported that long-term exposure to high levels of nitrogen dioxide can be responsible for chronic lung disease. Long-term exposure to NO 2 can impair the sense of smell ( 81 ).

However, systems other than respiratory ones can be involved, as symptoms such as eye, throat, and nose irritation have been registered ( 81 ).

High levels of nitrogen dioxide are deleterious to crops and vegetation, as they have been observed to reduce crop yield and plant growth efficiency. Moreover, NO 2 can reduce visibility and discolor fabrics ( 81 ).

Sulfur Dioxide (SO 2 )

Sulfur dioxide is a harmful gas that is emitted mainly from fossil fuel consumption or industrial activities. The annual standard for SO 2 is 0.03 ppm ( 82 ). It affects human, animal, and plant life. Susceptible people as those with lung disease, old people, and children, who present a higher risk of damage. The major health problems associated with sulfur dioxide emissions in industrialized areas are respiratory irritation, bronchitis, mucus production, and bronchospasm, as it is a sensory irritant and penetrates deep into the lung converted into bisulfite and interacting with sensory receptors, causing bronchoconstriction. Moreover, skin redness, damage to the eyes (lacrimation and corneal opacity) and mucous membranes, and worsening of pre-existing cardiovascular disease have been observed ( 81 ).

Environmental adverse effects, such as acidification of soil and acid rain, seem to be associated with sulfur dioxide emissions ( 83 ).

Lead is a heavy metal used in different industrial plants and emitted from some petrol motor engines, batteries, radiators, waste incinerators, and waste waters ( 84 ).

Moreover, major sources of lead pollution in the air are metals, ore, and piston-engine aircraft. Lead poisoning is a threat to public health due to its deleterious effects upon humans, animals, and the environment, especially in the developing countries.

Exposure to lead can occur through inhalation, ingestion, and dermal absorption. Trans- placental transport of lead was also reported, as lead passes through the placenta unencumbered ( 85 ). The younger the fetus is, the more harmful the toxic effects. Lead toxicity affects the fetal nervous system; edema or swelling of the brain is observed ( 86 ). Lead, when inhaled, accumulates in the blood, soft tissue, liver, lung, bones, and cardiovascular, nervous, and reproductive systems. Moreover, loss of concentration and memory, as well as muscle and joint pain, were observed in adults ( 85 , 86 ).

Children and newborns ( 87 ) are extremely susceptible even to minimal doses of lead, as it is a neurotoxicant and causes learning disabilities, impairment of memory, hyperactivity, and even mental retardation.

Elevated amounts of lead in the environment are harmful to plants and crop growth. Neurological effects are observed in vertebrates and animals in association with high lead levels ( 88 ).

Polycyclic Aromatic Hydrocarbons(PAHs)

The distribution of PAHs is ubiquitous in the environment, as the atmosphere is the most important means of their dispersal. They are found in coal and in tar sediments. Moreover, they are generated through incomplete combustion of organic matter as in the cases of forest fires, incineration, and engines ( 89 ). PAH compounds, such as benzopyrene, acenaphthylene, anthracene, and fluoranthene are recognized as toxic, mutagenic, and carcinogenic substances. They are an important risk factor for lung cancer ( 89 ).

Volatile Organic Compounds(VOCs)

Volatile organic compounds (VOCs), such as toluene, benzene, ethylbenzene, and xylene ( 90 ), have been found to be associated with cancer in humans ( 91 ). The use of new products and materials has actually resulted in increased concentrations of VOCs. VOCs pollute indoor air ( 90 ) and may have adverse effects on human health ( 91 ). Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ). Predictable assessment of the toxic effects of complex VOC mixtures is difficult to estimate, as these pollutants can have synergic, antagonistic, or indifferent effects ( 91 , 93 ).

Dioxins originate from industrial processes but also come from natural processes, such as forest fires and volcanic eruptions. They accumulate in foods such as meat and dairy products, fish and shellfish, and especially in the fatty tissue of animals ( 94 ).

Short-period exhibition to high dioxin concentrations may result in dark spots and lesions on the skin ( 94 ). Long-term exposure to dioxins can cause developmental problems, impairment of the immune, endocrine and nervous systems, reproductive infertility, and cancer ( 94 ).

Without any doubt, fossil fuel consumption is responsible for a sizeable part of air contamination. This contamination may be anthropogenic, as in agricultural and industrial processes or transportation, while contamination from natural sources is also possible. Interestingly, it is of note that the air quality standards established through the European Air Quality Directive are somewhat looser than the WHO guidelines, which are stricter ( 95 ).

Effect of Air Pollution on Health

The most common air pollutants are ground-level ozone and Particulates Matter (PM). Air pollution is distinguished into two main types:

Outdoor pollution is the ambient air pollution.

Indoor pollution is the pollution generated by household combustion of fuels.

People exposed to high concentrations of air pollutants experience disease symptoms and states of greater and lesser seriousness. These effects are grouped into short- and long-term effects affecting health.

Susceptible populations that need to be aware of health protection measures include old people, children, and people with diabetes and predisposing heart or lung disease, especially asthma.

As extensively stated previously, according to a recent epidemiological study from Harvard School of Public Health, the relative magnitudes of the short- and long-term effects have not been completely clarified ( 57 ) due to the different epidemiological methodologies and to the exposure errors. New models are proposed for assessing short- and long-term human exposure data more successfully ( 57 ). Thus, in the present section, we report the more common short- and long-term health effects but also general concerns for both types of effects, as these effects are often dependent on environmental conditions, dose, and individual susceptibility.

Short-term effects are temporary and range from simple discomfort, such as irritation of the eyes, nose, skin, throat, wheezing, coughing and chest tightness, and breathing difficulties, to more serious states, such as asthma, pneumonia, bronchitis, and lung and heart problems. Short-term exposure to air pollution can also cause headaches, nausea, and dizziness.

These problems can be aggravated by extended long-term exposure to the pollutants, which is harmful to the neurological, reproductive, and respiratory systems and causes cancer and even, rarely, deaths.

The long-term effects are chronic, lasting for years or the whole life and can even lead to death. Furthermore, the toxicity of several air pollutants may also induce a variety of cancers in the long term ( 96 ).

As stated already, respiratory disorders are closely associated with the inhalation of air pollutants. These pollutants will invade through the airways and will accumulate at the cells. Damage to target cells should be related to the pollutant component involved and its source and dose. Health effects are also closely dependent on country, area, season, and time. An extended exposure duration to the pollutant should incline to long-term health effects in relation also to the above factors.

Particulate Matter (PMs), dust, benzene, and O 3 cause serious damage to the respiratory system ( 97 ). Moreover, there is a supplementary risk in case of existing respiratory disease such as asthma ( 98 ). Long-term effects are more frequent in people with a predisposing disease state. When the trachea is contaminated by pollutants, voice alterations may be remarked after acute exposure. Chronic obstructive pulmonary disease (COPD) may be induced following air pollution, increasing morbidity and mortality ( 99 ). Long-term effects from traffic, industrial air pollution, and combustion of fuels are the major factors for COPD risk ( 99 ).

Multiple cardiovascular effects have been observed after exposure to air pollutants ( 100 ). Changes occurred in blood cells after long-term exposure may affect cardiac functionality. Coronary arteriosclerosis was reported following long-term exposure to traffic emissions ( 101 ), while short-term exposure is related to hypertension, stroke, myocardial infracts, and heart insufficiency. Ventricle hypertrophy is reported to occur in humans after long-time exposure to nitrogen oxide (NO 2 ) ( 102 , 103 ).

Neurological effects have been observed in adults and children after extended-term exposure to air pollutants.

Psychological complications, autism, retinopathy, fetal growth, and low birth weight seem to be related to long-term air pollution ( 83 ). The etiologic agent of the neurodegenerative diseases (Alzheimer's and Parkinson's) is not yet known, although it is believed that extended exposure to air pollution seems to be a factor. Specifically, pesticides and metals are cited as etiological factors, together with diet. The mechanisms in the development of neurodegenerative disease include oxidative stress, protein aggregation, inflammation, and mitochondrial impairment in neurons ( 104 ) ( Figure 1 ).

Figure 1

Impact of air pollutants on the brain.

Brain inflammation was observed in dogs living in a highly polluted area in Mexico for a long period ( 105 ). In human adults, markers of systemic inflammation (IL-6 and fibrinogen) were found to be increased as an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins ( 106 ). The progression of atherosclerosis and oxidative stress seem to be the mechanisms involved in the neurological disturbances caused by long-term air pollution. Inflammation comes secondary to the oxidative stress and seems to be involved in the impairment of developmental maturation, affecting multiple organs ( 105 , 107 ). Similarly, other factors seem to be involved in the developmental maturation, which define the vulnerability to long-term air pollution. These include birthweight, maternal smoking, genetic background and socioeconomic environment, as well as education level.

However, diet, starting from breast-feeding, is another determinant factor. Diet is the main source of antioxidants, which play a key role in our protection against air pollutants ( 108 ). Antioxidants are free radical scavengers and limit the interaction of free radicals in the brain ( 108 ). Similarly, genetic background may result in a differential susceptibility toward the oxidative stress pathway ( 60 ). For example, antioxidant supplementation with vitamins C and E appears to modulate the effect of ozone in asthmatic children homozygous for the GSTM1 null allele ( 61 ). Inflammatory cytokines released in the periphery (e.g., respiratory epithelia) upregulate the innate immune Toll-like receptor 2. Such activation and the subsequent events leading to neurodegeneration have recently been observed in lung lavage in mice exposed to ambient Los Angeles (CA, USA) particulate matter ( 61 ). In children, neurodevelopmental morbidities were observed after lead exposure. These children developed aggressive and delinquent behavior, reduced intelligence, learning difficulties, and hyperactivity ( 109 ). No level of lead exposure seems to be “safe,” and the scientific community has asked the Centers for Disease Control and Prevention (CDC) to reduce the current screening guideline of 10 μg/dl ( 109 ).

It is important to state that impact on the immune system, causing dysfunction and neuroinflammation ( 104 ), is related to poor air quality. Yet, increases in serum levels of immunoglobulins (IgA, IgM) and the complement component C3 are observed ( 106 ). Another issue is that antigen presentation is affected by air pollutants, as there is an upregulation of costimulatory molecules such as CD80 and CD86 on macrophages ( 110 ).

As is known, skin is our shield against ultraviolet radiation (UVR) and other pollutants, as it is the most exterior layer of our body. Traffic-related pollutants, such as PAHs, VOCs, oxides, and PM, may cause pigmented spots on our skin ( 111 ). On the one hand, as already stated, when pollutants penetrate through the skin or are inhaled, damage to the organs is observed, as some of these pollutants are mutagenic and carcinogenic, and, specifically, they affect the liver and lung. On the other hand, air pollutants (and those in the troposphere) reduce the adverse effects of ultraviolet radiation UVR in polluted urban areas ( 111 ). Air pollutants absorbed by the human skin may contribute to skin aging, psoriasis, acne, urticaria, eczema, and atopic dermatitis ( 111 ), usually caused by exposure to oxides and photochemical smoke ( 111 ). Exposure to PM and cigarette smoking act as skin-aging agents, causing spots, dyschromia, and wrinkles. Lastly, pollutants have been associated with skin cancer ( 111 ).

Higher morbidity is reported to fetuses and children when exposed to the above dangers. Impairment in fetal growth, low birth weight, and autism have been reported ( 112 ).

Another exterior organ that may be affected is the eye. Contamination usually comes from suspended pollutants and may result in asymptomatic eye outcomes, irritation ( 112 ), retinopathy, or dry eye syndrome ( 113 , 114 ).

Environmental Impact of Air Pollution

Air pollution is harming not only human health but also the environment ( 115 ) in which we live. The most important environmental effects are as follows.

Acid rain is wet (rain, fog, snow) or dry (particulates and gas) precipitation containing toxic amounts of nitric and sulfuric acids. They are able to acidify the water and soil environments, damage trees and plantations, and even damage buildings and outdoor sculptures, constructions, and statues.

Haze is produced when fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is caused by gas emissions in the air coming from industrial facilities, power plants, automobiles, and trucks.

Ozone , as discussed previously, occurs both at ground level and in the upper level (stratosphere) of the Earth's atmosphere. Stratospheric ozone is protecting us from the Sun's harmful ultraviolet (UV) rays. In contrast, ground-level ozone is harmful to human health and is a pollutant. Unfortunately, stratospheric ozone is gradually damaged by ozone-depleting substances (i.e., chemicals, pesticides, and aerosols). If this protecting stratospheric ozone layer is thinned, then UV radiation can reach our Earth, with harmful effects for human life (skin cancer) ( 116 ) and crops ( 117 ). In plants, ozone penetrates through the stomata, inducing them to close, which blocks CO 2 transfer and induces a reduction in photosynthesis ( 118 ).

Global climate change is an important issue that concerns mankind. As is known, the “greenhouse effect” keeps the Earth's temperature stable. Unhappily, anthropogenic activities have destroyed this protecting temperature effect by producing large amounts of greenhouse gases, and global warming is mounting, with harmful effects on human health, animals, forests, wildlife, agriculture, and the water environment. A report states that global warming is adding to the health risks of poor people ( 119 ).

People living in poorly constructed buildings in warm-climate countries are at high risk for heat-related health problems as temperatures mount ( 119 ).

Wildlife is burdened by toxic pollutants coming from the air, soil, or the water ecosystem and, in this way, animals can develop health problems when exposed to high levels of pollutants. Reproductive failure and birth effects have been reported.

Eutrophication is occurring when elevated concentrations of nutrients (especially nitrogen) stimulate the blooming of aquatic algae, which can cause a disequilibration in the diversity of fish and their deaths.

Without a doubt, there is a critical concentration of pollution that an ecosystem can tolerate without being destroyed, which is associated with the ecosystem's capacity to neutralize acidity. The Canada Acid Rain Program established this load at 20 kg/ha/yr ( 120 ).

Hence, air pollution has deleterious effects on both soil and water ( 121 ). Concerning PM as an air pollutant, its impact on crop yield and food productivity has been reported. Its impact on watery bodies is associated with the survival of living organisms and fishes and their productivity potential ( 121 ).

An impairment in photosynthetic rhythm and metabolism is observed in plants exposed to the effects of ozone ( 121 ).

Sulfur and nitrogen oxides are involved in the formation of acid rain and are harmful to plants and marine organisms.

Last but not least, as mentioned above, the toxicity associated with lead and other metals is the main threat to our ecosystems (air, water, and soil) and living creatures ( 121 ).

In 2018, during the first WHO Global Conference on Air Pollution and Health, the WHO's General Director, Dr. Tedros Adhanom Ghebreyesus, called air pollution a “silent public health emergency” and “the new tobacco” ( 122 ).

Undoubtedly, children are particularly vulnerable to air pollution, especially during their development. Air pollution has adverse effects on our lives in many different respects.

Diseases associated with air pollution have not only an important economic impact but also a societal impact due to absences from productive work and school.

Despite the difficulty of eradicating the problem of anthropogenic environmental pollution, a successful solution could be envisaged as a tight collaboration of authorities, bodies, and doctors to regularize the situation. Governments should spread sufficient information and educate people and should involve professionals in these issues so as to control the emergence of the problem successfully.

Technologies to reduce air pollution at the source must be established and should be used in all industries and power plants. The Kyoto Protocol of 1997 set as a major target the reduction of GHG emissions to below 5% by 2012 ( 123 ). This was followed by the Copenhagen summit, 2009 ( 124 ), and then the Durban summit of 2011 ( 125 ), where it was decided to keep to the same line of action. The Kyoto protocol and the subsequent ones were ratified by many countries. Among the pioneers who adopted this important protocol for the world's environmental and climate “health” was China ( 3 ). As is known, China is a fast-developing economy and its GDP (Gross Domestic Product) is expected to be very high by 2050, which is defined as the year of dissolution of the protocol for the decrease in gas emissions.

A more recent international agreement of crucial importance for climate change is the Paris Agreement of 2015, issued by the UNFCCC (United Nations Climate Change Committee). This latest agreement was ratified by a plethora of UN (United Nations) countries as well as the countries of the European Union ( 126 ). In this vein, parties should promote actions and measures to enhance numerous aspects around the subject. Boosting education, training, public awareness, and public participation are some of the relevant actions for maximizing the opportunities to achieve the targets and goals on the crucial matter of climate change and environmental pollution ( 126 ). Without any doubt, technological improvements makes our world easier and it seems difficult to reduce the harmful impact caused by gas emissions, we could limit its use by seeking reliable approaches.

Synopsizing, a global prevention policy should be designed in order to combat anthropogenic air pollution as a complement to the correct handling of the adverse health effects associated with air pollution. Sustainable development practices should be applied, together with information coming from research in order to handle the problem effectively.

At this point, international cooperation in terms of research, development, administration policy, monitoring, and politics is vital for effective pollution control. Legislation concerning air pollution must be aligned and updated, and policy makers should propose the design of a powerful tool of environmental and health protection. As a result, the main proposal of this essay is that we should focus on fostering local structures to promote experience and practice and extrapolate these to the international level through developing effective policies for sustainable management of ecosystems.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

IM is employed by the company Delphis S.A. The remaining authors declare that the present review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

  • 1. WHO Air Pollution. WHO. Available online at: http://www.who.int/airpollution/en/ (accessed October 5, 2019).
  • 2. Moores FC. Climate change and air pollution: exploring the synergies and potential for mitigation in industrializing countries. Sustainability. (2009) 1:43–54. 10.3390/su1010043 [ DOI ] [ Google Scholar ]
  • 3. USGCRP (2009). Global Climate Change Impacts in the United States. In: Karl TR, Melillo JM, Peterson TC, editors. Climate Change Impacts by Sectors: Ecosystems. New York, NY: United States Global Change Research Program. Cambridge University Press. [ Google Scholar ]
  • 4. Marlon JR, Bloodhart B, Ballew MT, Rolfe-Redding J, Roser-Renouf C, Leiserowitz A, et al. (2019). How hope and doubt affect climate change mobilization. Front. Commun. 4:20 10.3389/fcomm.2019.00020 [ DOI ] [ Google Scholar ]
  • 5. Eze IC, Schaffner E, Fischer E, Schikowski T, Adam M, Imboden M, et al. Long- term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int. (2014) 70:95–105. 10.1016/j.envint.2014.05.014 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 6. Kelishadi R, Poursafa P. Air pollution and non-respiratory health hazards for children. Arch Med Sci. (2010) 6:483–95. 10.5114/aoms.2010.14458 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 7. Manucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health. (2017) 14:1048 10.3390/ijerph14091048 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 8. Burden of Disease from Ambient and Household Air Pollution. Available online: http://who.int/phe/health_topics/outdoorair/databases/en/ (accessed August 15, 2017).
  • 9. Hashim D, Boffetta P. Occupational and environmental exposures and cancers in developing countries. Ann Glob Health. (2014) 80:393–411. 10.1016/j.aogh.2014.10.002 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 10. Guo Y, Zeng H, Zheng R, Li S, Pereira G, Liu Q, et al. The burden of lung cancer mortality attributable to fine particles in China. Total Environ Sci. (2017) 579:1460–6. 10.1016/j.scitotenv.2016.11.147 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 11. Hou Q, An XQ, Wang Y, Guo JP. An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Sci Total Environ. (2010) 408:4026–32. 10.1016/j.scitotenv.2009.12.030 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 12. Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. Environ Int. (2012) 42:10–9. 10.1016/j.envint.2011.03.003 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 13. Burroughs Peña MS, Rollins A. Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol Clin. (2017) 35:71–86. 10.1016/j.ccl.2016.09.001 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 14. Kankaria A, Nongkynrih B, Gupta S. Indoor air pollution in india: implications on health and its control. Indian J Comm Med. 39:203–7. 10.4103/0970-0218.143019 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 15. Parajuli I, Lee H, Shrestha KR. Indoor air quality and ventilation assessment of rural mountainous households of Nepal. Int J Sust Built Env. (2016) 5:301–11. 10.1016/j.ijsbe.2016.08.003 [ DOI ] [ Google Scholar ]
  • 16. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ. (2012) 61:212–20. 10.1016/j.atmosenv.2012.07.030 [ DOI ] [ Google Scholar ]
  • 17. Singh DP, Gadi R, Mandal TK, Saud T, Saxena M, Sharma SK. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos Environ. (2013) 68:120–6. 10.1016/j.atmosenv.2012.11.042 [ DOI ] [ Google Scholar ]
  • 18. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M BN. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ. (2008) 86:390–4. 10.2471/BLT.07.044529 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 19. Kassomenos P, Kelessis A, Petrakakis M, Zoumakis N, Christides T, Paschalidou AK. Air Quality assessment in a heavily-polluted urban Mediterranean environment through Air Quality indices. Ecol Indic. (2012) 18:259–68. 10.1016/j.ecolind.2011.11.021 [ DOI ] [ Google Scholar ]
  • 20. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med. (1993) 329:1753–9. 10.1056/NEJM199312093292401 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 21. Schwela DH, Köth-Jahr I. Leitfaden für die Aufstellung von Luftreinhalteplänen [Guidelines for the Implementation of Clean Air Implementation Plans]. Landesumweltamt des Landes Nordrhein Westfalen. State Environmental Service of the State of North Rhine-Westphalia (1994). [ Google Scholar ]
  • 22. Newlands M. Environmental Activism, Environmental Politics, and Representation: The Framing of the British Environmental Activist Movement. Ph.D. thesis. University of East London, United Kingdom (2015). [ Google Scholar ]
  • 23. NEPIS (National Service Center for Environmental Publications) US EPA (Environmental Protection Agency) (2017). Available online at: https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges (accessed August 15, 2017).
  • 24. NRC (National Research Council) Available online at: https://www.nap.edu/read/10728/chapter/1,2014 (accessed September 17, 2019).
  • 25. Bull A. Traffic Congestion: The Problem and How to Deal With It. Santiago: Nationes Unidas, Cepal; (2003). [ Google Scholar ]
  • 26. Spiegel J, Maystre LY. Environmental Pollution Control, Part VII - The Environment, Chapter 55, Encyclopedia of Occupational Health and Safety. Available online at: http://www.ilocis.org/documents/chpt55e.htm (accessed September 17, 2019).
  • 27. European Community Reports Assessment of the Effectiveness of European Air Quality Policies and Measures: Case Study 2; Comparison of the EU and US Air Quality Standards and Planning Requirements. (2004). Available online at: https://ec.europa.eu/environment/archives/cafe/activities/pdf/case_study2.pdf (accessed September 22, 2019).
  • 28. Gibson R, Ward S. Parties in the digital age; a review. J Represent Democracy. (2009) 45:87–100. 10.1080/00344890802710888 [ DOI ] [ Google Scholar ]
  • 29. Kaun A, Uldam J. Digital activism: after the hype. New Media Soc. (2017) 20:2099–106. 10.1177/14614448177319 [ DOI ] [ Google Scholar ]
  • 30. Sivitanides M, Shah V. The era of digital activism. In: 2011 Conference for Information Systems Applied Research(CONISAR) Proceedings Wilmington North Carolina, USA. Available online at: https://www.arifyildirim.com/ilt510/marcos.sivitanides.vivek.shah.pdf (accessed September 22, 2019).
  • 31. Möller L, Schuetzle D, Autrup H. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants. Environ Health Perspect. (1994) 102(Suppl. 4):193–210. 10.1289/ehp.94102s4193 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 32. Jacobson MZ, Jacobson PMZ. Atmospheric Pollution: History, Science, and Regulation. Cambridge University Press (2002). p. 206 10.1256/wea.243.02 [ DOI ] [ Google Scholar ]
  • 33. Stover RH. Flooding of soil for disease control. In: Mulder D, editor. Chapter 3. Developments in Agricultural and Managed Forest Ecology. Elsevier (1979). p. 19–28. Available online at: http://www.sciencedirect.com/science/article/pii/B9780444416926500094 10.1016/B978-0-444-41692-6.50009-4 (accessed July 1, 2019). [ DOI ]
  • 34. Maipa V, Alamanos Y, Bezirtzoglou E. Seasonal fluctuation of bacterial indicators in coastal waters. Microb Ecol Health Dis. (2001) 13:143–6. 10.1080/089106001750462687 [ DOI ] [ Google Scholar ]
  • 35. Bezirtzoglou E, Dimitriou D, Panagiou A. Occurrence of Clostridium perfringens in river water by using a new procedure. Anaerobe. (1996) 2:169–73. 10.1006/anae.1996.0022 [ DOI ] [ Google Scholar ]
  • 36. Kjellstrom T, Lodh M, McMichael T, Ranmuthugala G, Shrestha R, Kingsland S. Air and Water Pollution: Burden and Strategies for Control. DCP, Chapter 43. 817–32 p. Available online at: https://www.dcp-3.org/sites/default/files/dcp2/DCP43.pdf (accessed September 17, 2017).
  • 37. Pathak RK, Wang T, Ho KF, Lee SC. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water- soluble organic carbon (WSOC). Atmos Environ. (2011) 45:318–25. 10.1016/j.atmosenv.2010.10.021 [ DOI ] [ Google Scholar ]
  • 38. Bonavigo L, Zucchetti M, Mankolli H. Water radioactive pollution and related environmental aspects. J Int Env Appl Sci. (2009) 4:357–63 [ Google Scholar ]
  • 39. World Health Organization (WHO) Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease. 1106 p. Available online at: https://www.who.int/quantifying_ehimpacts/publications/preventingdisease.pdf (accessed September 22, 2019).
  • 40. Stansfeld SA. Noise effects on health in the context of air pollution exposure. Int J Environ Res Public Health. (2015) 12:12735–60. 10.3390/ijerph121012735 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 41. Ethical Unicorn. Everything You Need To Know About Aerosols & Air Pollution. (2019). Available online at: https://ethicalunicorn.com/2019/04/29/everything-you-need-to-know-about-aerosols-air-pollution/ (accessed October 4, 2019).
  • 42. Colbeck I, Lazaridis M. Aerosols and environmental pollution. Sci Nat. (2009) 97:117–31. 10.1007/s00114-009-0594-x [ DOI ] [ PubMed ] [ Google Scholar ]
  • 43. Incecik S, Gertler A, Kassomenos P. Aerosols and air quality. Sci Total Env. (2014) 355, 488–9. 10.1016/j.scitotenv.2014.04.012 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 44. D'Amato G, Pawankar R, Vitale C, Maurizia L. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res. (2016) 8:391–5. 10.4168/aair.2016.8.5.391 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 45. Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe. (2011) 17:337–40. 10.1016/j.anaerobe.2011.05.016 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 46. Castelli F, Sulis G. Migration and infectious diseases. Clin Microbiol Infect. (2017) 23:283–9. 10.1016/j.cmi.2017.03.012 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 47. Watson JT, Gayer M, Connolly MA. Epidemics after natural disasters. Emerg Infect Dis. (2007) 13:1–5. 10.3201/eid1301.060779 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 48. Fenn B. Malnutrition in Humanitarian Emergencies. Available online at: https://www.who.int/diseasecontrol_emergencies/publications/idhe_2009_london_malnutrition_fenn.pdf . (accessed August 15, 2017).
  • 49. Lindh E, Argentini C, Remoli ME, Fortuna C, Faggioni G, Benedetti E, et al. The Italian 2017 outbreak Chikungunya virus belongs to an emerging Aedes albopictus –adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect Dis. (2019) 6:ofy321. 10.1093/ofid/ofy321 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 50. Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, Pigaglio L, Decoppet A, et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Eur Surveill. (2017) 22:17-00647. 10.2807/1560-7917.ES.2017.22.39.17-00647 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 51. Menne B, Murray V. Floods in the WHO European Region: Health Effects and Their Prevention. Copenhagen: WHO; Weltgesundheits organisation, Regionalbüro für Europa; (2013). Available online at: http://www.euro.who.int/data/assets/pdf_file/0020/189020/e96853.pdf (accessed 15 August 2017). [ Google Scholar ]
  • 52. Schneider SH. The greenhouse effect: science and policy. Science. (1989) 243:771–81. 10.1126/science.243.4892.771 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 53. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc. (1997) 47:1238–49. 10.1080/10473289.1997.10464074 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 54. US EPA (US Environmental Protection Agency) (2018). Available online at: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed September 22, 2018).
  • 55. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, et al. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos Environ. (2011) 45:2651–62. 10.1016/j.atmosenv.2011.02.066 [ DOI ] [ Google Scholar ]
  • 56. Zhang L, Yang Y, Li Y, Qian ZM, Xiao W, Wang X, et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci Total Env. (2019) 688:136–42. 10.1016/j.scitotenv.2019.05.470. [ DOI ] [ PubMed ] [ Google Scholar ]
  • 57. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long- and short-term exposure to PM2.5 and mortality using novel exposure models, Epidemiology. (2013) 24:555–61. 10.1097/EDE.0b013e318294beaa [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 58. New Hampshire Department of Environmental Services Current and Forecasted Air Quality in New Hampshire. Environmental Fact Sheet (2019). Available online at: https://www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-16.pdf (accessed September 22, 2019).
  • 59. Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, et al. Health effects of particles in ambient air. Int J Hyg Environ Health. (2004) 207:399–407. 10.1078/1438-4639-00306 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 60. Boschi N. (Ed.). Defining an educational framework for indoor air sciences education. In: Education and Training in Indoor Air Sciences. Luxembourg: Springer Science & Business Media; (2012). 245 p. [ Google Scholar ]
  • 61. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev. (2012) 41:6606–30. 10.1039/c2cs35076a [ DOI ] [ PubMed ] [ Google Scholar ]
  • 62. Bezirtzoglou E, Alexopoulos A. Ozone history and ecosystems: a goliath from impacts to advance industrial benefits and interests, to environmental and therapeutical strategies. In: Ozone Depletion, Chemistry and Impacts. (2009). p. 135–45. [ Google Scholar ]
  • 63. Villányi V, Turk B, Franc B, Csintalan Z. Ozone Pollution and its Bioindication. In: Villányi V, editor. Air Pollution. London: Intech Open; (2010). 10.5772/10047 [ DOI ] [ Google Scholar ]
  • 64. Massachusetts Department of Public Health Massachusetts State Health Assessment. Boston, MA (2017). Available online at: https://www.mass.gov/files/documents/2017/11/03/2017%20MA%20SHA%20final%20compressed.pdf (accessed October 30, 2017).
  • 65. Lorenzini G, Saitanis C. Ozone: A Novel Plant “Pathogen.” In: Sanitá di, Toppi L, Pawlik-Skowrońska B, editors. Abiotic Stresses in Plant Springer Link (2003). p. 205–29. 10.1007/978-94-017-0255-3_8 [ DOI ] [ Google Scholar ]
  • 66. Fares S, Vargas R, Detto M, Goldstein AH, Karlik J, Paoletti E, et al. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Change Biol. (2013) 19:2427–43. 10.1111/gcb.12222 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 67. Harmens H, Mills G, Hayes F, Jones L, Norris D, Fuhrer J. Air Pollution and Vegetation. ICP Vegetation Annual Report 2006/2007. (2012) [ Google Scholar ]
  • 68. Emberson LD, Pleijel H, Ainsworth EA, den Berg M, Ren W, Osborne S, et al. Ozone effects on crops and consideration in crop models. Eur J Agron. (2018) 100:19–34. 10.1016/j.eja.2018.06.002 [ DOI ] [ Google Scholar ]
  • 69. Alexopoulos A, Plessas S, Ceciu S, Lazar V, Mantzourani I, Voidarou C, et al. Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce ( Lactuca sativa ) and green bell pepper ( Capsicum annuum ). Food Control. (2013) 30:491–6. 10.1016/j.foodcont.2012.09.018 [ DOI ] [ Google Scholar ]
  • 70. Alexopoulos A, Plessas S, Kourkoutas Y, Stefanis C, Vavias S, Voidarou C, et al. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. Int J Food Microbiol. (2017) 246:5–11. 10.1016/j.ijfoodmicro.2017.01.018 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 71. Maggio A, Fagnano M. Ozone damages to mediterranean crops: physiological responses. Ital J Agron. (2008) 13–20. 10.4081/ija.2008.13 [ DOI ] [ Google Scholar ]
  • 72. McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol. (2013) 22:360–1. 10.1111/exd.12125 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 73. WHO Health Risks of Ozone From Long-Range Transboundary Air Pollution. Available online at: http://www.euro.who.int/data/assets/pdf_file/0005/78647/E91843.pdf (accessed August 15, 2019).
  • 74. Thiele JJ, Traber MG, Tsang K, Cross CE, Packer L. In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med. (1997) 23:365–91. 10.1016/S0891-5849(96)00617-X [ DOI ] [ PubMed ] [ Google Scholar ]
  • 75. Hatch GE, Slade R, Harris LP, McDonnell WF, Devlin RB, Koren HS, et al. Ozone dose and effect in humans and rats. A comparison using oxygen- 18 labeling and bronchoalveolar lavage. Am J Respir Crit Care Med. (1994) 150:676–83. 10.1164/ajrccm.150.3.8087337 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 76. Lippmann M. Health effects of ozone. A critical review. JAPCA. (1989) 39:672–95. 10.1080/08940630.1989.10466554 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 77. Gryparis A, Forsberg B, Katsouyanni K, Analitis A, Touloumi G, Schwartz J, et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med. (2004) 170:1080–7. 10.1164/rccm.200403-333OC [ DOI ] [ PubMed ] [ Google Scholar ]
  • 78. Soon W, Baliunas SL, Robinson AB, Robinson ZW. Environmental effects of increased atmospheric carbon dioxide. Climate Res. (1999) 13:149–64 10.1260/0958305991499694 [ DOI ] [ Google Scholar ]
  • 79. Richmont-Bryant J, Owen RC, Graham S, Snyder M, McDow S, Oakes M, et al. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual Atm Health. (2017) 10:611–25. 10.1007/s11869-016-0455-7 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 80. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO 2 ) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. (2009) 39:743–81. 10.3109/10408440903294945 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 81. Chen T-M, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci. (2007) 333:249–56. 10.1097/MAJ.0b013e31803b900f [ DOI ] [ PubMed ] [ Google Scholar ]
  • 82. US EPA. Table of Historical SO 2 NAAQS, Sulfur US EPA. Available online at: https://www3.epa.gov/ttn/naaqs/standards/so2/s_so2_history.html (accessed October 5, 2019).
  • 83. WHO Regional Office of Europe (2000). Available online at: https://euro.who.int/_data/assets/pdf_file/0020/123086/AQG2ndEd_7_4Sulfuroxide.pdf
  • 84. Pruss-Ustun A, Fewrell L, Landrigan PJ, Ayuso-Mateos JL. Lead exposure. Comparative Quantification of Health Risks. World Health Organization. p. 1495–1542. Available online at: https://www.who.int/publications/cra/chapters/volume2/1495-1542.pdf?ua=1
  • 85. Goyer RA. Transplacental transport of lead. Environ Health Perspect. (1990) 89:101–5. 10.1289/ehp.9089101 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 86. National Institute of Environmental Health Sciences (NIH) Lead and Your Health. (2013). 1–4 p. Available online at: https://www.niehs.nih.gov/health/materials/lead_and_your_health_508.pdf (accessed September 17, 2019).
  • 87. Farhat A, Mohammadzadeh A, Balali-Mood M, Aghajanpoor-Pasha M, Ravanshad Y. Correlation of blood lead level in mothers and exclusively breastfed infants: a study on infants aged less than six months. Asia Pac J Med Toxicol. (2013) 2:150–2. [ Google Scholar ]
  • 88. Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA. The detrimental effects of lead on human and animal health. Vet World. (2016) 9:660–71. 10.14202/vetworld.2016.660-671 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 89. Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. (2016) 25:107–23. 10.1016/j.ejpe.2015.03.011 [ DOI ] [ Google Scholar ]
  • 90. Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut Res Int. (2014) 21:2240–8. 10.1007/s11356-013-2150-7 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 91. Molhave L, Clausen G, Berglund B, Ceaurriz J, Kettrup A, Lindvall T, et al. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air. 7:225–240. 10.1111/j.1600-0668.1997.00002.x [ DOI ] [ Google Scholar ]
  • 92. Gibb T. Indoor Air Quality May be Hazardous to Your Health. MSU Extension. Available online at: https://www.canr.msu.edu/news/indoor_air_quality_may_be_hazardous_to_your_health (accessed October 5, 2019).
  • 93. Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin Y-H, Jaspers I, et al. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: simple VOCs and model PM. Atmos Chem Phys Discuss. (2012) 12:5065–105. 10.5194/acpd-12-5065-2012 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 94. WHO (World Health Organization) . Dioxins and Their Effects on Human Health. Available online at: https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (accessed October 5, 2019).
  • 95. EEA (European Environmental Agency) Air Quality Standards to the European Union and WHO. Available online at: https://www.eea.europa.eu/themes/data-and-maps/figures/air-quality-standards-under-the
  • 96. Nakano T, Otsuki T. [Environmental air pollutants and the risk of cancer]. (Japanese). Gan To Kagaku Ryoho. (2013) 40:1441–5. [ PubMed ] [ Google Scholar ]
  • 97. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med. (2016) 22:138–43. 10.1097/MCP.0000000000000248 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 98. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. (2014) 383:1581–92. 10.1016/S0140-6736(14)60617-6 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 99. Jiang X-Q, Mei X-D, Feng D. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis. (2016) 8:E31–40. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 100. Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. (2017) 110:634–42. 10.1016/j.acvd.2017.05.003 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 101. Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. (2007) 116:489–496. 10.1161/CIRCULATIONAHA.107.693622 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 102. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens. (2011) 2011:495349. 10.4061/2011/495349 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 103. Leary PJ, Kaufman JD, Barr RG, Bluemke DA, Curl CL, Hough CL, et al. Traffic- related air pollution and the right ventricle. the multi-ethnic study of atherosclerosis. Am J Respir Crit Care Med. (2014) 189:1093–100. 10.1164/rccm.201312-2298OC [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 104. Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol. (2012) 2012:782462. 10.1155/2012/782462 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 105. Calderon-Garciduenas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. (2002) 30:373–89. 10.1080/01926230252929954 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 106. Rückerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect. (2007) 115:1072–80. 10.1289/ehp.10021 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 107. Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. (2006) 3:13–8. 10.1186/1743-8977-3-13 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 108. Kelly FJ. Dietary antioxidants and environmental stress. Proc Nutr Soc. (2004) 63:579–85. 10.1079/PNS2004388 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 109. Bellinger DC. Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr. (2008) 20:172–7. 10.1097/MOP.0b013e3282f4f97b [ DOI ] [ PubMed ] [ Google Scholar ]
  • 110. Balbo P, Silvestri M, Rossi GA, Crimi E, Burastero SE. Differential role of CD80 and CD86 on alveolar macrophages in the presentation of allergen to T lymphocytes in asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol. (2001) 31:625–36. 10.1046/j.1365-2222.2001.01068.x [ DOI ] [ PubMed ] [ Google Scholar ]
  • 111. Drakaki E, Dessinioti C, Antoniou C. Air pollution and the skin. Front Environ Sci Eng China. (2014) 15:2–8. 10.3389/fenvs.2014.00011 [ DOI ] [ Google Scholar ]
  • 112. Weisskopf MG, Kioumourtzoglou M-A, Roberts AL. Air pollution and autism spectrum disorders: causal or confounded? Curr Environ Health Rep. (2015) 2:430–9. 10.1007/s40572-015-0073-9 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 113. Mo Z, Fu Q, Lyu D, Zhang L, Qin Z, Tang Q, et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: a case-crossover study. Environ Pollut. (2019) 246:183–9. 10.1016/j.envpol.2018.11.109 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 114. Klopfer J. Effects of environmental air pollution on the eye. J Am Optom Assoc. (1989) 60:773–8. [ PubMed ] [ Google Scholar ]
  • 115. Ashfaq A, Sharma P. Environmental effects of air pollution and application of engineered methods to combat the problem. J Indust Pollut Control. (2012) 29. [ Google Scholar ]
  • 116. Madronich S, de Gruijl F. Skin cancer and UV radiation. Nature. (1993) 366:23–9. 10.1038/366023a0 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 117. Teramura A. Effects of UV-B radiation on the growth and yield of crop plants. Physiol Plant. (2006) 58:415–27. 10.1111/j.1399-3054.1983.tb04203.x [ DOI ] [ Google Scholar ]
  • 118. Singh E, Tiwari S, Agrawal M. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. Plant Biol Stuttg Ger. (2009) 11(Suppl. 1):101–8. 10.1111/j.1438-8677.2009.00263.x [ DOI ] [ PubMed ] [ Google Scholar ]
  • 119. Manderson L. How global Warming is Adding to the Health Risks of Poor People. The Conversation. University of the Witwatersrand. Available online at: http://theconversation.com/how-global-warming-is-adding-to-the-health-risks-of-poor-people-109520 (accessed October 5, 2019).
  • 120. Ministers of Energy and Environment Federal/Provincial/Territorial Ministers of Energy and Environment (Canada), editor. The Canada-Wide Acid Rain Strategy for Post-2000. Halifax: The Ministers; (1999). 11 p. [ Google Scholar ]
  • 121. Zuhara S, Isaifan R. The impact of criteria air pollutants on soil and water: a review. (2018) 278–84. 10.30799/jespr.133.18040205 [ DOI ] [ Google Scholar ]
  • 122. WHO . First WHO Global Conference on Air Pollution and Health. (2018). Available online at: https://www.who.int/airpollution/events/conference/en/ (accessed October 6, 2019).
  • 123. What is the Kyoto Protocol? UNFCCC. Available online at: https://unfccc.int/kyoto__protocol (accessed October 6, 2019).
  • 124. CopenhagenClimate Change Conference (UNFCCC). Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).
  • 125. Durban Climate Change Conference,. UNFCCC (2011). Available online at: https://unfccc.int/process-and-meetings/conferences/past-conferences/copenhagen-climate-change-conference-december-2009/copenhagen-climate-change-conference-december-2009 (accessed October 6, 2019).
  • 126. Paris Climate Change Agreement,. (2016). Available online at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
  • View on publisher site
  • PDF (689.0 KB)
  • Collections

Similar articles

Cited by other articles, links to ncbi databases.

  • Download .nbib .nbib
  • Format: AMA APA MLA NLM

Add to Collections

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

First page of “The research proposal on Air pollution”

Download Free PDF

The research proposal on Air pollution

Profile image of ASIF JISKANI

Related topics

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Advertisement

Advertisement

Mitigation strategies for reducing air pollution

  • Trend Editorial
  • Published: 11 April 2020
  • Volume 27 , pages 19226–19235, ( 2020 )

Cite this article

research proposal on air pollution

  • Daniele Sofia 1 , 2 ,
  • Filomena Gioiella 1 ,
  • Nicoletta Lotrecchiano 1 , 2 &
  • Aristide Giuliano 1 , 3  

85k Accesses

145 Citations

56 Altmetric

Explore all metrics

Today, it is increasingly recognized that air pollution hurts human health. Consequently, efficient mitigation strategies need to be implemented for substantial environmental and health co-benefits. A valid approach to reducing the air pollution effects on the environment and human health is proposed. Specific guidelines have been elucidated by differentiating them on the base of the final stakeholders (citizens, enterprises, and public authorities), of the emission sources (transport, household energy, industry, and energy generation sector, agriculture, and shipping area), and of the field of implementation (urban and extra-urban context). This paper can provide useful information for governments for the implementation of a strategic plan focused on emphasizing multi-pollutant emission reductions and overall air pollution-related risk.

Explore related subjects

  • Environmental Chemistry

Avoid common mistakes on your manuscript.

Introduction

Today, air pollution is the main responsible for environmental quality worsening in many cities all over the world, with adverse outcomes on people’s health (Vlachokostas et al. 2011 ). According to the last World Health Organization (WHO), more than 80% of people living in the urban context are subjected to air quality levels above the emission limits regarding air pollution. The primary atmospheric pollutants are carbon monoxide (CO), particulate matter (PM), nitrogen oxides (NO x ), volatile organic compounds (VOC s ), polycyclic aromatic hydrocarbons (PAH s ), ozone (O 3 ), and sulfur dioxide (SO 2 ). The increase in emission amounts of these pollutants is due to the rapid industrialization and urbanization of developing countries (Fu and Chen 2017 ).

The worsening of air quality in urban environments has considerable interest in the scientific community and public opinion due to the strong relationship between air pollution exposure and increased harmful short- and long-term effects on human health (Masiol et al. 2014 ). Recently, significant epidemiological studies in the literature have found that air pollution contributes to increased morbidity (especially at respiratory and cardiovascular levels), premature mortality, and finally, cancer (Brancato et al. 2018 ). Figure 1 summarizes the different area of diseases: neuronal (Dales et al. 2009 ) (Power et al. 2015 ) (Power et al. 2016 ) (Levy 2015 ) (Block and Calderon-Garciduenas 2009 ), respiratory (Brugha and Grigg 2014 ) (Guan et al. 2016 ) (Kurmi et al. 2010 ) (Goss et al. 2004 ) (Fajersztajn et al. 2013 ), cardiovascular (Zanobetti and Schwartz 2005 ) (Anderson et al. 2012 ) (Maheswaran 2016 ) (Yang et al. 2017 ), and oncology area (Raaschou-Nielsen et al. 2013 ) (Crouse et al. 2010 ). Each disease is affected by own pollutant exposures (PM, NO 2 , SO 2 , CO 2 , O 3 ) with the corresponding level of risk. Human exposure to air pollutions is strongly affected by the lifestyle and by the prevailing life environment (Buonanno et al. 2014 ). In their work, Buonanno et al. ( 2012 ) demonstrated that essential contributions to children exposure are due to the time spent at home for cooking/eating as well as for the time spent in traffic jams moving to or from school (Buonanno et al. 2012 ). In addition to human health risks associated with gases and particles inhalation, urban air pollution also causes damages at an environmental level, for example, by increasing the corrosion and deterioration of materials and damaging historical monuments and buildings (Vlachokostas et al. 2011 ). The effects of air pollution have been studied on many assets of the Italian artistic heritage Depending on where they are located; it was possible to verify the effects of the typical pollutants of the context itself. Sulfur dioxide reflecting the severe air pollution of this very large city can be dangerous for stone monuments as the marble Arch of Titus in Rome (Metallo et al. 1995 ); the particulate matter and the heavy metals as Pb and Zn can damage monuments like the Vittoriano Monument in Rome that is exposed to intense road traffic (Barca et al. 2014 ). The exposure to air pollution can influence also the stability of public utility buildings such as bridges as occurred in Genoa during 2018 when, due to the aggressive environmental condition that corroded the strands, the Polcevera Bridge collapsed causing 43 deaths and more than 5000 evacuated people (Invernizzi et al. 2019 ).

figure 1

Different areas of diseases in the human body

To tackle these problems, efficient long-term air pollution mitigation strategies need to be identified and implemented (Rodriguez de San Miguel 2019 ). For this reason, the role of the management to improve the current situation becomes critical (Werner et al. 2015 ). It is, therefore, crucial to define a strategic plan with some actions in compliance with the relevant directives in the field of air quality (Vlachokostas et al. 2011 ). These actions strongly depend on local policy and economy, on available technologies, and on public opinion (Harlan and Ruddell 2011 ).

The aim of this work

This paper aims to contribute to the existing knowledge on environmental pollution literature by investigating how people, companies, and committees can contribute to reducing pollution effects by engaging in pro-environmental behaviors. We firmly believe that if these proposed behavioral recommendations are pursued, positive environmental impacts and health co-benefits are very likely to occur. Among the policies that we intend to propose, the promotion of active transport and sharing mobility, the reduction of energy use in the household environment, the urban planning, the provision of benefits in favor of bio-fueled (Sofia et al. 2013 ), and the use of electric vehicles are included.

Recommendations for citizens

To mitigate the air pollution problem, many efforts have to be taken with the aim to decrease the pollutants emissions coming from people. Each citizen may contribute to the mitigation of air pollution through behavioral changes in their lifestyle as the reduction of energy consumption in transportation, households, and supply.

Public and active transport

Transportation is the central investigated sector for public health benefits obtained after air pollution reduction (Sarigiannis et al. 2017 ) (Lindsay et al. 2011 ). It is well known that vehicular transport produces about 70% of environmental pollution since exhaust fumes from motors are a source of several pollutants (CO, NO 2 , VOC, and PM) (Xia et al. 2015 ). Consequently, programs aiming at changing travel behaviors are essential (Guersola et al. 2017 ). Each citizen should use public transports (bus, tram, subway, train) as much as possible and possibly travel actively (walking and cycling). The shift to active transport by reducing the use of owned cars entails significant benefits for human health and environment (Rabl and de Nazelle 2012 ) (Maizlish et al. 2013 ) (Xia et al. 2015 ). Recently, several studies have shown that the increase in physical activity reduces the incidence of several diseases, especially at cardiovascular level (coronary heart disease, stroke), hypertension, and diabetes (Mueller et al. 2015 ) (Scheepers et al. 2014 ). Furthermore, in this way, significant reductions of colon and breast cancer and the improvement of mental health can be achieved (Rabl and de Nazelle 2012 ). Of course, benefits from physical activity are obtained by minimizing exposure to atmospheric pollution; therefore, the outdoor activity has to be carried out in the environment with healthy air (Rabl and de Nazelle 2012 ). Furthermore, commuters should be encouraged to use low-cost public bicycle sharing systems to combine benefits concerning health and air pollution reduction (Rojas-Rueda et al. 2011 ).

Household sector

Nowadays, household air pollution is attributed to the residential use of the solid fuels from cooking activities (Stabile et al. 2014 ) and space heating systems (Stabile et al. 2018 ), leading a significant hazard for the health of exposed populations (Gao et al. 2018 ). Accordingly, actions to reduce energy use by households and buildings are essential because of their great contribution to gas emissions (Datta et al. 2017 ). One of the appropriate strategies is the improvement of combustion efficiency of solid household fuels (Venkataraman et al. 2010 ). Generally, traditional fuels have low combustion efficiency producing accordingly large amounts of products due to incomplete combustion, with consequences for both environment and human health. In their work, Marchetti et al. ( 2019 ) demonstrated how the particles deriving from the combustion different fuels (pellet, wood, charcoal) could activate toxicological pathways, finally producing cytotoxic effects on human health (Marchetti et al. 2019 ). The fuel toxicity is dependent on the chemical composition of the particulate matter characterizing the quality of the combustion and fuel. The energy generated from renewable sources (biomass) should lead health benefits for citizen because of a cleaner environment with low emission production (Harlan and Ruddell 2011 ) with respect to the traditional fossil fuel used.

Nevertheless, more stringent regulations are required to guarantee high-quality biomass fuels and safer combustion technologies (Marchetti et al. 2019 ). On their side, each citizen has to adopt some behavior actions to reduce energy consumption and emissions deriving from home heating. Another essential structural adaptation is the introduction of new technologies to reduce energy use in new buildings (Ruparathna et al. 2017 ). Porritt et al. ( 2012 ) showed how limited changes in building are able to eliminate overheating during heat wave periods and reduce space energy use for internal climatization, such as external wall insulation, solar reflective coatings (external shutters), and painting of the outer walls in lighter colors (Porritt et al. 2011 ) (Porritt et al. 2012 ). Furthermore, green roof technologies can help to reduce local outdoor temperatures and improve the appropriate cooling inside buildings (Harlan and Ruddell 2011 ).

Despite efforts to reduce particle emissions deriving from outdoor activities, most of air pollution is related to indoor microenvironment (Buonanno et al. 2017 ). The air quality inside buildings is affected by the air circulation, the construction materials, the use of cleaning products, and the habits of occupants (smoking). A vast range of pollutants can concentrate in indoor environments produced by individual activities in addition to outdoor concentrations (Settimo 2015 ). As a consequence, air exchange with particle filters, ventilating (Debnath et al. 2017 ), and air-conditioning systems are a distinct way of reducing air pollution in indoor spaces, like homes or shared communities (offices, schools, hospitals, sport facilities, restaurants, cinemas, and public transport) (Kwong et al. 2019 ). Among public buildings, school is one of the worrisome indoor environments since children represent a susceptible population to air pollution due to their age (Mainka et al. 2015 ).

Healthy diet

Beyond mitigation strategies to reduce air pollution, each citizen can adopt some eating habits that can influence own health status (Biesbroek et al. 2014 ). It was well demonstrated that the increased intake of antioxidants in foods could hinder and reduce the adverse effects of atmospheric pollution (Kelly et al. 2003 ). Precisely, the antioxidants are substances able to neutralize free radicals generated by some air pollutants (ozone and nitrogen dioxide). In this way, injury to respiratory tract like asthma can be avoided after their oxidant exposure (Romieu et al. 2002 ). Therefore, it is necessary to reduce the consumption of food deriving from animal source by promoting a healthy diet with higher consumption of fruit and vegetables.

Recommendations to small, medium, and large enterprises

Globally, one of the main contributors to emissions of atmospheric pollutants and a significant user of energy is the industrial sector (Conti et al. 2015 ). The pollutants deriving from industrial activities are transported into the urbanized areas. Consequently, the development of strategies to reduce air pollution is crucial. In this section, possible measures relating to industrial, agriculture, and shipping sector are introduced such as energy reduction (Pask et al. 2017 ), advanced technologies and process performance promotion (Contreras-Zarazúa et al. 2018 ), improvement of the efficiency of livestock farming and manure management, and electrification of the port docks.

Industrial sector

Even today, the primary source of energy are fossil fuels, responsible for the production of some pollutants notably particulate matter (PM) (Salehi et al. 2015 ), nitrogen oxides (NO x ), and sulfur oxides (SO x ) (Chao 2008 ). The reduction of power generation from fossil fuel sources (coal, oil, gas) imply health benefits by reducing local air pollutants, especially micronic and submicronic particles (Karka et al. 2017 ). Recently, several initiatives to replace fossil fuels with alternative renewable fuels have been taken into consideration (Ribeiro et al. 2015 ). Among the various technologies for energy production from renewable sources, the biomass combustion can represent a valid alternative technology of fossil fuels (Sripada et al. 2017 ) (Giuliano et al. 2018a ). Shrestha and Shakya ( 2012 ) showed that the implementation of the cost minimization energy system MARKAL, based on the market allocation framework, reduces the local pollutant emissions, improving the efficiency of the national overall energy consumption. This strategy includes energy supply, conversion and process technology, end-use service demand, and environmental emissions promoting the use of renewable energy resources (Shrestha and Shakya 2012 ). In this way, cities will have benefits if they will move toward low carbon technologies (Ren et al. 2012 ).

Among the various industrial sectors, one of the primary sources of the main pollutants (VOCs, toxins, PAH) is the chemical industry (Lee and Cho 2003 ). As a consequence, proper air pollution control techniques have to be applied to reduce the negative environmental impact (Contreras-Zarazúa et al. 2018 ). Another mitigation strategy to reduce air pollution from the industrial sector is the implementation of advanced technologies in the industrial process (Babar and Shareefdeen 2014 ). For example, clean coal technologies (CCT) can treat and use coal in an efficient way without a substantial environmental impact (Giuliano et al. 2018b ). Besides, it was demonstrated that retrofitted technologies such as catalytic converters and desulfurization reduce only local air pollution.

On the other hand, the benefits of integrated environmental strategies are higher than the ones given by air quality management plans and measures for GHG reduction. This result is highlighted in the study of Chae and Park, who demonstrated that using compressed natural gas and an efficient heating and cooling systems, both local and global air pollution reduction can be achieved (Chae and Park 2011 ). Furthermore, the best available techniques (BAT) are promoted to reduce the environmental impacts deriving from industrial activities since they operate minimizing costs (Ibáñez-Forés et al. 2013 ). This technology has to be “available” that means usable to the operator and economically and technically feasible. Additionally, it has to be “best” that means provide a high level of environmental protection as a whole (Liu and Wen 2012 ). As a consequence, plant owners of different industrial sectors have to select the BAT that is appropriate for their conditions.

Finally, the change in average working hours in a very efficient way that could have a good impact on consumption and related environmental pressure (Bergh et al. 2011 ).

Even if the literature available is still low, some studies demonstrated that changing the times of going to work, shifts, brackets, rationalizing home-office travel times, and the rigidity of schedules can reduce traffic congestion and CO 2 and fine dust emissions, PM10, and PM2.5 as well as employee stress with a positive return on the quality of work and the competitiveness of businesses (Ge et al. 2018 ). Furthermore, it is possible to improve air quality by promoting online work, avoiding not strictly necessary car moving. Another example is to support the vertical part-time (fewer days a week but more hours a day), halving the mowing toward the workplace.

Agriculture and food sector

The majority of fine particulate originates not only from combustion processes in traffic, power plants, industry, and household energy use but also from sources related to agriculture (Martins et al. 2015 ). One of the particulate precursors is ammonia (NH 3 ) after the reaction with the sulfuric and nitric acid (Erisman and Schaap 2004 ). It has been estimated that about 80% of NH 3 entering in the atmosphere is produced by agricultural activities in Europe (Velthof et al. 2012 ). In agriculture, the main sources responsible for NH 3 production are the excretion of urine by livestock and the manure storage (Velthof et al. 2012 ). There are many specific changes to mitigate NH 3 emissions in agriculture (Giannadaki et al. 2018 ). These imply the improvement of the technology and the management of agricultural productions, but also include the reduction of food wastes combined with human diet optimization (Zhao et al. 2017 ). In fact, the NH 3 emission levels depend on the animal typology, with higher amounts for beef and sheep, and a lower amount for pigs and poultry. Four strategies are identified in this study to reduce NH 3 by focusing mainly on livestock:

Improvement in livestock farming efficiency: The livestock farming efficiency can be improved by supporting local farmers’ markets and community gardens, in order to reduce the traveled distances of transported goods. Agriculture and land use increases the demand for deforestation, increasing the levels of atmospheric CO 2 produced promoting climate change (Younger et al. 2008 ).

Manure management optimization: Besides NH 3 emission, livestock manure contributes to other substances, mainly methane (CH 4 ) and nitrous oxide (N 2 O). These emissions derive from various phases in the use of manure ranging from the handling and storage to the application as a fertilizer to soils (Mohankumar et al. 2017 ). Some abatement options need to be developed like lowering the dietary crude protein content, external slurry storage via acidification, frequent removal of manure, and covers of straw or artificial films (Mohankumar et al. 2017 ) (Hou et al. 2015 ).

Reduction in the use of fossil fuels: Another revolution in agricultural sector concerns the reduction of dependence on non-renewable energy. Oil is also used to produce nitrogenous fertilizers (McMichael et al. 2007 ).

Reduction in the production and consumption of foods from animal sources: It is necessary to promote more healthy diets with low consumption of foods from animal sources (Friel et al. 2009 ).

Shipping sector

Nowadays, the shipping sector provides low-cost and reliable delivery services in the economic field (Arunachalam et al. 2015 ). Nevertheless, shipping-related activities have a considerable impact on air pollution, especially in coastal areas but also globally (Buccolieri et al. 2016 ). The primary air pollutants are PM, VOCs, NO x , O 3 , SO 2 , and CO (Bailey and Solomon 2004 ). As a consequence, a wide range of options toward “greener” seaports is needed (Bailey and Solomon 2004 ). Some of these measures are easy to adopt such as the regulation of fuel quality (by using low-sulfur alternative fuels), the speed reduction (Lack et al. 2011 ), and the use of alternative transportation equipment (Lai et al. 2011 ).

Furthermore, a variety of technical strategies for reducing ship emissions have to be adopted. NO x and SO x emission reduction strategies consist in lowering combustion temperature, switching to lower sulfur marine fuels and using seawater scrubbing (Han 2010 ). In addition, it is essential to operate in modifying the entry and the docking of ships in the harbor to reduce local emissions. A precautionary approach includes the dock electrification that means the shore-side power for docked vessels to avoid the motor power on during the stop (Dhupia et al. 2011 ).

Recommendations to local/provincial/regional/national authorities

Rapid industrialization, as well as urbanization in developing countries, has led to an increase in air pollution with adverse effects on human health. As a consequence, the development of city action plans that includes mitigation and adaptions strategies to emphasize pollutant emission reduction is an important step toward the better well-being of life. Therefore, the responsibility for urban areas such as governance bodies (local/provincial/regional/national authorities) is involved in planning the correct strategies aimed at improving air quality. In this section, more comprehensive management measures focused on emphasizing pollutant and emission sources reductions at both local and regional levels are proposed to mitigate the air pollution issue. The options include the implementation of new regulations, urban planning reorganization, and promotion of hybrid vehicles with low emissions.

New regulations

Air quality management policies have to fix new air quality standards that maximize overall population benefits, reduce illness related to air pollution and gas emissions from industrial, urban, or domestic activities (Fann et al. 2011 ). It is essential to identify effective structural and exceptional measures throughout the national territory.

Advisory and prevention

Frequently, acting with mitigation strategies after critical levels of pollution does not solve the pollution emergency. For this reason, it is necessary to move toward a “preventive approach to the emergency” by promoting effective measures before reaching critical levels of pollution (Bandyopadhyay et al. 2014 ). In this context, the authorities should support new technologies for air pollution monitoring (Mishra et al. 2015 ). Air pollution monitoring networks offer the possibility to measure the spatiotemporal distribution of air pollution in the urban environment for the health and safety of citizens (Singla et al. 2018 ) (Sofia et al. 2018a ). For example, sensor networks offer the potential to focus on air pollution monitoring reflecting high spatial and temporal variability in pollutant levels (Knox et al. 2013 ) (Sofia et al. 2018b ). In this way, if a particular pollutant exceeds the target limit, efficient strategies should be adopted to mitigate the air pollution issue and find the pollution sources. Furthermore, air quality prediction models are another way to make a rational decision by political leaders (Vicente et al. 2018 ). The combination of air quality monitoring and modeling is a valid approach for regulatory purposes (Vlachokostas et al. 2011 ).

Urban planning

Rapid urbanization has involved significant challenges in urban areas with dramatic consequences in air quality. The primary source of atmospheric pollution is vehicular traffic (Pospisil and Jicha 2017 ). The emissions from vehicles are different throughout the day with a maximum concentration during the more congested hours (Kumar et al. 2016 ). Therefore, policymakers have to support the implementation of strategies and actions aimed at reducing air pollution in urban areas while promoting economic growth and higher quality of life (Vranckx et al. 2015 ). In this context, the concept of “smart city” has emerged as a way to respond to the inhabitants’ needs more efficiently and sustainably. In urban planning, smart mobility represents a crucial factor. Since a major part of pollutant emissions in cities are due to traffic, an appropriate transport design in the urban area is needed (Cariolet et al. 2018 ). Political leaders have to promote changes in travel behaviors by supporting public transport (Sellitto et al. 2015 ) and the sharing of mobility. The strong inclination toward traffic congestion reduction promoted by policymakers is not always conformed to health promotion. Appropriate safety interventions must be proposed to have health benefits, especially for cyclists and pedestrians (Rojas-Rueda et al. 2016 ).

Regarding public bicycle sharing, it is now spreading in different countries in Europe, Asia, and America as a healthier transport system in the urban context (Rojas-Rueda et al. 2011 ). In addition, the reduction in private car use can be reached only ensuring public transport availability, cycling infrastructure, and green spaces (Panter et al. 2016 ). Currently, many cities in the world are moving toward mobility solutions implementing car-free days, strengthening the infrastructures and public transport (Nieuwenhuijsen and Khreis 2016 ). The objective is to reduce the traffic-related air pollution and provide strong opportunities to increase free spaces that can be used to improve the urban green with parks and open areas or attractive places (public squares, shops) for citizens and tourists (Nieuwenhuijsen and Khreis 2016 ). Furthermore, the reduction in vehicular traffic will certainly lead other human health benefits like the reduction of road accidents (Nieuwenhuijsen and Khreis 2016 ). All these mitigation measures have to be promoted in the long-term to obtain significant changes in emission reductions and human health benefits. In fact, in evaluating the effects of commonly adopted mitigation strategies such as car free-days in a large city of Po Valley (Northern Italy), Masiol and their colleagues (Masiol et al. 2014 ) did not find significant changes probably due to the very short time of mitigation procedure (Masiol et al. 2014 ).

In addition, the reduction in private cars use promotes the increase in public space for vegetation and retail goals. Roadside vegetation barriers can be a potential mitigation strategy for near-road air pollution (Isakov et al. 2017 ). In their work, Tong et al. ( 2016 ) demonstrated that a wide vegetation barrier combined with a solid barrier reduces pollutant concentrations significantly (Tong et al. 2016 ). Urban vegetation impacts our ecosystem positively by filtrating airborne particulate matter, providing a scenic public landscape and reducing flooding consequences (Al-thani et al. 2018 ).

Promotion of hybrid vehicles

It is well known that vehicle emissions (NOx, HC, O 3 , VOC, CO, and PM) contribute to air pollution (Wu et al. 2017 ). In this scenario, besides the implementation of increasingly stringent standards for vehicle emissions, the most effective policy is the promotion of the zero-emission vehicle (Perez et al. 2015 ). In particular, by using alternative fuels, respect to the traditional fossil ones, like electricity, bio-fuels, liquefied petroleum gas (LPG), natural gas (CHG, LNG), and, methane, this kind of cars can produce lower concentrations of pollutants (Qiu et al. 2016 ).

With the rapid industrialization, the hybrid electric vehicle (HEV) technology is a valid alternative to the fuel prices rising and to satisfy the more effective environmental policies (Xia et al. 2015 ) (Sabri et al. 2016 ). The combination to active travel with zero-emission vehicles can reduce the cases of ischemic heart disease (Woodcock et al. 2009 ). The government has to make a series of laws aimed at encouraging electric mobility such as tax incentives and lower prices for usage or parking (Leurent and Windisch 2011 ).

Conclusions

This study summarizes the mitigation strategies that can be adopted by different stakeholders (citizens, companies, and committees) to obtain public health co-benefits with air pollution reduction. In particular, specific guidelines were provided in various sectors: transportation, industry, household, energy generation, agriculture, and shipping sector. These guidelines can be considered a basis for governments for the implementation of a strategic plan focused on the reduction of multi-pollutant emission, as well as of the overall air pollution-related risk. Individuals can also adopt environmental friendlier behaviors that together with mitigation policies, can obtain health and environment co-benefits. The strategic measures proposed, differing for the stakeholder (citizens, enterprises, and public authorities) on the application kind (direct/indirect measure), for the emission sources (transport, household energy, industry and energy generation sector, food, and agriculture) and for the area of implementation (urban and extra-urban context) that can be reassumed by Fig.  2 .

figure 2

The mitigation strategies or strategic measures proposed that can be adopted by different stakeholders to obtain public health co-benefits with air pollution reduction

Al-thani H, Koç M, Isaifan RJ (2018) A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. Environ Sci Pollut Res 25(28):27839–27857

CAS   Google Scholar  

Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175

Arunachalam S, Brantley H, Barzyk TM, Hagler G, Isakov V, Kimbrough E, Naess B, Rice N, Snyder MG, Talgo K, Venkatram A (2015) Assessment of port-related air quality impacts: geographic analysis of population. Int J Environ Pollut 58(4):231–250

Babar ZB, Shareefdeen Z (2014) Management and control of air emissions from electronic industries. Clean Techn Environ Policy 16(1):69–77

Google Scholar  

Bailey D, Solomon G (2004) Pollution prevention at ports: clearing the air. Environ Impact Assess Rev 24(7):749–774

Bandyopadhyay A, Bandyopadhyay S, Biswas MN (2014) Fabrication and operation of an online photoelectric particulate matter monitoring device. Clean Techn Environ Policy 17(1):265–271

Barca D, Comite V, Belfiore CM, Bonazza A, La Russa MF, Ruffolo SA, Crisci GM, Pezzino A, Sabbioni C (2014) Impact of air pollution in deterioration of carbonate building materials in Italian urban environments. Appl Geochem 48:122–131

Bergh J, Van Den CJM, Allen W (2011) Environment versus growth — a criticism of ‘degrowth’ and a Plea for ‘a-growth’. Ecol Econ 70(5):881–890

Biesbroek S, Bueno-De-Mesquita HB, Peeters PHM, Verschuren WM, Van Der Schouw YT, Kramer GFH, Tyszler M, Temme EHM (2014) Reducing our environmental footprint and improving our health: greenhouse gas emission and land use of usual diet and mortality in EPIC-NL: a prospective cohort study. Environ Health 13(1):1–9

Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanism of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516

Brancato V, Gioiella F, Imparato G, Guarnieri D, Urciuolo F, Netti PA (2018) 3D breast Cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomater 75:200–212

Brugha R, Grigg J (2014) Urban air pollution and respiratory infections. Paediatr Respir Rev 15(2):194–199

Buccolieri R, Cesari R, Dinoi A, Maurizi A, Tampieri F, Di Sabatino S (2016) Impact of ship emissions on local air quality in a Mediterranean City’s harbour after the European sulphur directive. Int J Environ Pollut 59(1):30–42

Buonanno G, Marini S, Morawska L, Fuoco FC (2012) Individual dose and exposure of Italian children to ultrafine particles. Sci Total Environ 438:271–277

Buonanno G, Stabile L, Morawska L (2014) Personal exposure to ultrafine particles: the influence of time-activity patterns. Sci Total Environ 468-469:903–907

Buonanno G, Stabile L, Morawska L, Giovinco G, Querol X (2017) Do air quality targets really represent safe limits for lung cancer risk? Sci Total Environ 580:74–82

Cariolet JM, Colombert M, Vuillet M, Diab Y (2018) Assessing the resilience of urban areas to traffic-related air pollution: application in greater Paris. Sci Total Environ 615(615):588–596

Chae Y, Park J (2011) Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul metropolitan area. Energy Policy 39(9):5296–5308

Chao K (2008) A new look at the cross-impact matrix and its application in futures studies. J Futures Stud 12(4):45–52

Conti ME, Ciasullo R, Tudino MB, Matta EJ (2015) “The industrial emissions trend and the problem of the implementation of the industrial emissions directive (IED)” Air Quality . Atmosph Health 8(2):151–161

Contreras-Zarazúa G, Villicaña-García E, Cansino-Loeza B, Vázquez-Castillo JA, Ponce-Ortega JM, Segovia-Hernández JG (2018) Environmental impact and occupational Hazard evaluation on intensified processes to produce diphenyl carbonate. Comput Chem Eng:1–12

Crouse DL, Goldberg MS, Ross NA, Chen H, Labreche F (2010) Postmenopausal breast Cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: a case-control study. Environ Health Perspect 118(11):1578–1583

Dales RE, Cakmak S, Vidal CB (2009) Air pollution and hospitalization for headache in Chile. Am J Epidemiol 170(8):1057–1066

Datta A, Sharma VP, Gaine T, Sehgal M (2017) Mitigation of domestic indoor air pollution in a pristine rural area of India. Manag Environ Qual 28:231–247

Debnath R, Bardhan R, Banerjee R (2017) Taming the killer in the kitchen: mitigating household air pollution from solid-fuel cookstoves through building design. Clean Techn Environ Policy 19(3):705–719

Dhupia J, Adnanes AK, Lee KM Kennedy L (2011) Electrification of port and port operations. Proceedings of MTEC2011, pp. 1–6

Erisman JW, Schaap M (2004) The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ Pollut 129(1):159–163

Fajersztajn L, Veras M, Barrozo LV, Saldiva P (2013) Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer 13(9):674–678

Fann N, Roman HA, Fulcher CM, Gentile MA, Hubbell BJ, Wesson K, Levy JI (2011) Maximizing health benefits and minimizing inequality: incorporating local-scale data in the design and evaluation of air quality policies. Risk Anal 31(6):908–922

Friel S, Dangour AD, Garnett T, Lock K, Chalabi Z, Roberts I, Butler A, Butler CD, Waage J, McMichael AJ, Haines A (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. Lancet 374(9706):2016–2025

Fu H, Chen J (2017) Formation, Features and controlling strategies of severe haze-fog pollutions in China. Sci Total Environ 578:121–138

Gao J, Hou H, Zhai Y, Woodward A, Vardoulakis S, Kovats S, Wilkinson P, Li L, Song X, Xu L, Meng B, Liu X, Wang J, Zhao J, Liu Q (2018) Greenhouse gas emissions reduction in different economic sectors: mitigation measures, health co-benefits, knowledge gaps, and policy implications. Environ Pollut 240(1):683–698

Ge J, Polhill JG, Craig TP (2018) Too much of a good thing? Using a spatial agent-based model to evaluate “unconventional” workplace sharing programmes. J Transp Geogr 69:83–97

Giannadaki D, Giannakis E, Pozzer A, Lelieveld J (2018) Estimating health and economic benefits of reductions in air pollution from agriculture. Sci Total Environ 622-623:1304–1316

Giuliano A, Gioiella F, Sofia D, Lotrecchiano N (2018a) A novel methodology and technology to promote the social acceptance of biomass Power plants avoiding Nimby syndrome. Chem Eng Trans 67:307–312

Giuliano A, Poletto M, Barletta D (2018b) Pure hydrogen co-production by membrane technology in an IGCC power plant with carbon capture. Int J Hydrog Energy 43(41):19279–19292

Goss CH, Newsom SA, Schildcrout JS, Sheppard L, Kaufman JD (2004) Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med 169(7):816–821

Guan WJ, Zheng XY, Chung KF, Zhong NS (2016) Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388(10054):1939–1951

Guersola M, Steiner MTA, Scarpin CT (2017) A methodology for minimizing LPG transportation impact. Manag Environ Qual 28:807–820

Han CH (2010) Strategies to reduce air pollution in shipping industry. Asian J Ship Logistic 26(1):7–30

Harlan SL, Ruddell DM (2011) Climate change and health in cities: impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Current Option in Environmental Sustainability 3(3):126–134

Hou Y, Velthof GL, Oenema O (2015) Mitigation of Ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Glob Chang Biol 21(3):1293–1312

Ibáñez-Forés V, Bovea MD, Azapagic A (2013) Assessing the sustainability of best available techniques (BAT): methodology and application in the ceramic tiles industry. J Clean Prod 51:162–176

Invernizzi S, Montagnoli F, Carpinteri A (2019) Fatigue assessment of the collapsed XX th century cable-stayed Polcevera bridge in Genoa. Proced Struct Integ 18:237–244

Isakov V, Venkatram A, Baldauf R, Deshmukh P, Zhang M (2017) Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality. Int J Environ Pollut 62(2):127–135

Karka P, Papadokonstantakis S, Kokossis A (2017) Cradle-to-gate assessment of environmental impacts for a broad set of biomass-to-product process chains. Int J Life Cycle Assess 22(9):1418–1440

Kelly FJ, Dunster C, Mudway I (2003) Air pollution and the elderly: oxidant/antioxidant issues worth consideration. Eur Respir J 40:70s–75s

Knox A, Mykhaylova N, Evans GJ, Lee CJ, Karney B, Brook JR (2013) The expanding scope of air pollution monitoring can facilitate sustainable development. Sci Total Environ 448:189–196

Kumar A, Patil RS, Dikshit AK, Kumar R (2016) Comparison of predicted vehicular pollution concentration with air quality standards for different time periods. Clean Techn Environ Policy 18(7):2293–2303

Kurmi OP, Semple S, Simkhada P, Smith WCS, Ayres JG (2010) COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 65(3):221–228

Kwong QJ, Abdullah J, Chuan Tan S, Thio THG, Yeaw WS (2019) A field study of indoor air quality and occupant perception in experimental laboratories and workshops. Manag Environ Qual 30:467–482

Lack DA, Cappa CD, Langridge J, Bahreini R, Buffaloe G, Brock C, Cerully K, Coffman D, Hayden K, Holloway J, Lerner B, Massoli P, Li SM, McLaren R, Middlebrook AM, Moore R, Nenes A, Nuaaman I, Onasch TB, Peischl J, Perring A, Quinn PK, Ryerson T, Schwartz JP, Spackman R, Wofsy SC, Worsnop D, Xiang B, Williams E (2011) Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. Environ Sci Technol 45(20):9052–9060

Lai KH, Lun VYH, Wong CWY, Cheng TCE (2011) Green shipping practices in the shipping industry: conceptualization, adoption, and implications. Resour Conserv Recycl 55(6):631–638

Lee BK, Cho SW (2003) Strategies for emission reduction of air pollutants produced from a chemical plant. Environ Manag 31(1):42–49

Leurent F, Windisch E (2011) Triggering the development of electric mobility: a review of public policies. Eur Transp Res Rev 3(4):221–235

Levy RJ (2015) Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol Teratol 49:31–40

Lindsay G, Macmillan A, Woodward A (2011) Moving urban trips from cars to bicycles: impact on health and emissions. Aust N Z J Public Health 35(1):54–60

Liu X, Wen Z (2012) Best available techniques and pollution control: a case study on China’s thermal power industry. J Clean Prod 23:113–121

Maheswaran R (2016) Air pollution and stroke – an overview of the evidence base. Spatial Spatio-temp Epidemiol 18:74–81

Mainka A, Zajusz-Zubek E, Kaczmarek K (2015) PM10 composition in urban and rural nursery schools in upper Silesia, Poland: trace elements analysis. Int J Environ Res Public Health 12(7):7990–8008

Maizlish N, Woodcock J, Co S, Ostro B, Fanai A, Fairley D (2013) Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay Area. Am J Public Health 103(4):703–709

Marchetti LE, Bengalli R, Avino P, Stabile L, Buonanno G, Colombo A, Camatini M, Mantecca P (2019) In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Sci Total Environ 649:1422–1433

Martins H, Monteiro A, Ferreira J, Gama C, Ribeiro I, Borrego C, Miranda AI (2015) The role of ammonia on particulate matter pollution over Portugal. Int J Environ Pollut 57(3/4):215–226

Masiol M, Agostinelli C, Formenton G, Tarabotti E, Pavoni B (2014) Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days. Sci Total Environ 494(495):84–96

McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370(9594):1253–1263

Metallo MC, Poli AA, Diana M, Persia F, Cirillo MC (1995) Air pollution loads on historical monuments: an air quality model application to the marble arch of Titus in Rome. Sci Total Environ 171:63–172

Mishra RK, Joshi T, Goel NI, Gupta H, Kumar A (2015) Monitoring and analysis of PM 10 concentration at Delhi Metro construction sites. Int J Environ Pollut 57(1/2):27–37

Mohankumar S, Purath E, Winiwarter W, Amon B (2017) Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: abatement options and emission interactions. J Environ Qual 47(1):30–41

Mueller N, Rojas-Rueda D, Cole-Hunter T, de Nazelle A, Dons E, Gerike R, Götschi T, Int Panis L, Kahlmeier S, Nieuwenhuijsen M (2015) Health impact assessment of active transportation: a systematic review. Prev Med 76:103–114

Nieuwenhuijsen MJ, Khreis H (2016) Car free cities: pathway to healthy urban living. Environ Int 94:251–262

Panter J, Heinen E, Mackett R, Ogilvie D (2016) Impact of new transport infrastructure on walking, cycling, and physical activity. Am J Prev Med 50(2):45–53

Pask F, Lake P, Yang A, Tokos H, Sadhunkhan J (2017) Industrial oven improvement for energy reduction and enhanced process performance. Clean Techn Environ Policy 19(1):215–224

Perez L, Trüeb S, Cowie H, Keuken MP, Mudu P, Ragettli MS, Sarigiannis DA, Tobollik M, Tuomisto J, Vienneau D, Sabel C, Künzli N (2015) Transport-related measures to mitigate climate change in Basel, Switzerland: a health-effectiveness comparison study. Environ Int 85:111–119

Porritt S, Shao L, Cropper P, Goodier C (2011) Adapting dwellings for heat waves. Sustain Cities Soc 1(2):81–90

Porritt SM, Cropper PC, Shao L, Goodier CI (2012) Ranking of interventions to reduce dwelling overheating during heat waves. Energy Build 55:16–27

Pospisil J, Jicha M (2017) Influence of vehicle-induced turbulence on pollutant dispersion in street canyon and adjacent urban area. Int J Environ Pollut 62:2–4

Power MC, Kioumourtzoglou M-A, Hart JE, Okereke OI, Laden F, Weisskopf MG (2015) The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study. BMJ 350:1–9

Power MC, Adar SD, Yanosky JD, Weuve J (2016) Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. NeuroToxicology 56:235–253

Qiu Z, Li X, Hao Y, Deng S (2016) Potential of diesel emissions reduction strategies in Xi’an, China. Clean Techn Environ Policy 18(8):2717–2724

Raaschou-Nielsen O, Zorana AJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Östenson CG, Fratiglioni L, Penell J, Korek M et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol 14(9):813–822

Rabl A, de Nazelle A (2012) Benefits of shift from car to active transport. Transp Policy 19(1):121–131

Ren WX, Geng Y, Xue B, Fujita T, Ma Z, Jiang P (2012) Pursuing co-benefits in China’s old industrial base: a case of Shenyang. Urban Clim 1(72):55–64

Ribeiro I, Monteiro A, Martins H, Freitas S, Borrego C, Lopes M (2015) How does the use of biodiesel affect urban air quality? Int J Environ Pollut 58:79–88

Rodriguez de San Miguel JA (2019) Management of air pollution in Mexico. Manag Environ Qual 30:578–592

Rojas-Rueda D, de Nazelle A, Tainio M, Nieuwenhuijsen MJ (2011) The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. Bmj 343:1–8

Rojas-Rueda D, De Nazelle A, Andersen ZJ, Braun-Fahrländer C, Bruha J, Bruhova-Foltynova H, Desqueyroux H, Praznoczy C, Ragettli MS, Tainio M, Nieuwenhuijsen MJ (2016) Health impacts of active transportation in Europe. PLoS One 11(3):1–14

Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M, Téllez-Rojo MM, Moreno-Macías H, Reyes-Ruiz NI, Del Río-Navarro BE, Ruiz-Navarro MX, Hatch G, Slade R, Hernández-Avila M (2002) Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med 166(5):703–709

Ruparathna R, Hewage K, Sadiq R (2017) Rethinking investment planning and optimizing net zero emission buildings. Clean Techn Environ Policy 19(6):1711–1724

Sabri MF, Danapalasingam KA, Rahmat MF (2016) A review on hybrid electric vehicles architecture and energy management strategies. Renew Sust Energ Rev 53:1433–1442

Salehi KH, Sofia D, Barletta D, Poletto M (2015) Dust generation in vibrated cohesive powders. Chem Eng Trans 43(1):769–774

Sarigiannis DA, Kontoroupis P, Nikolaki S, Gotti A, Chapizanis D, Karakitsios S (2017) Benefits on public health from transport-related greenhouse gas mitigation policies in southeastern European cities. Sci Total Environ 579:1427–1438

Scheepers CE, Wendel-Vos GCW, den Broeder JM, van Kempen EEMM, van Wesemael PJV, Schuit AJ (2014) Shifting from car to active transport: a systematic review of the effectiveness of interventions. Transp Res A Policy Pract 70:264–280

Sellitto MA, Borchardt M, Pereira GM, Bubicz ME (2015) Tool for environmental performance assessment of city bus transit operations: case studies. Clean Techn Environ Policy 17(4):1053–1064

Settimo G (2015) Existing guidelines for indoor air quality: the case study of hospital environments. Indoor Air Qual Healthc Facilities:13–27

Shrestha RM, Shakya SR (2012) Benefits of low carbon development in a developing country: case of Nepal. Energy Econ 34(Suppl. 3):S503–S512

Singla S, Bansal D, Misra A (2018) Towards an integrated framework for air quality monitoring and exposure estimation — a review. Environ Monit Assess 190(562)

Sofia D, Joshi YA, Poletto M (2013) Kinetics of bioethanol production from lactose converted by Kluyveromyces Marxianus. Chem Eng Trans 32:1135–1140

Sofia D, Giuliano A, Gioiella F (2018a) Air quality monitoring network for tracking pollutants: the CASE study of Salerno city center. Chem Eng Trans 68:67–72

Sofia D, Giuliano A, Gioiella F, Barletta D, Poletto M (2018b) Modeling of an air quality monitoring network with high space-time resolution. Comput Aided Chem Eng 48:193–198

Sripada PP, Xu T, Kibria MA, Bhattacharya S (2017) Comparison of entrained flow gasification behaviour of Victorian Brown coal and biomass. Fuel 203:942–953

Stabile L, Jayaratne ER, Buonanno G, Morawska L (2014) Charged particles and cluster ions produced during cooking activities. Sci Total Environ 497(498):516–526

Stabile L, Buonanno G, Avino P, Frattolillo A, Guerriero E (2018) Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ Pollut 235:65–73

Tong Z, Baldauf RW, Isakov V, Deshmukh P, Max Zhang K (2016) Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci Total Environ 541:920–927

Velthof GL, van Bruggen C, Groenestein CM, de Haan BJ, Hoogeveen MW, Huijsmans JFM (2012) A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmos Environ 46:248–255

Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian National Initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev 14(2):63–72

Vicente B, Rafael S, Rodrigues V, Relvas H, Vilaça M, Teixeira J, Bandeira J, Coelho M, Borrego C (2018) Influence of different complexity levels of road traffic models on air quality modelling at street scale. Air Qual Atmos and Health 11:1217–1232

Vlachokostas C, Achillas C, Moussiopoulos N, Banias G (2011) Multicriteria methodological approach to manage urban air pollution. Atmos Environ 45(25):4160–4169

Vranckx S, Lefebvre W, van Poppel M, Beckx C, Theunis J (2015) Air quality impact of intelligent transportation system actions used in a decision support system for adaptive traffic management. Int J Environ Pollut 57(3/4):133–145

Werner M, Kryza M, Dore AJ (2015) Mean annual population exposure to atmospheric particulate matter in Poland. Int J Environ Pollut 58(1–2):89–99

Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374(9705):1930–1943

Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, Walsh MP, Wallington TJ, Zhang KM, Stevanovic S (2017) On-road vehicle emissions and their control in China: a review and outlook. Sci Total Environ 574:332–349

Xia T, Nitschke M, Zhang Y, Shah P, Crabb S, Hansen A (2015) Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environ Int 74:281–290

Yang C, Zhao W, Deng K, Zhou V, Zhou X (2017) The association between air pollutants and autism spectrum disorders. Environ Sci Pollut Res 24:15949–15958

Younger M, Morrow-Almeida HR, Vindigni SM, Dannenberg AL (2008) The built environment, climate change, and health. Opportunities for co-benefits. Am J Prev Med 35(5):517–526

Zanobetti A, Schwartz J (2005) The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity Case-crossover analysis. Environ Health Perspect 113(8):978–982

Zhao ZQ, Bai ZH, Winiwarter W, Kiesewetter G, Heyes C, Ma L (2017) Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the Hai River basin in China. Sci Total Environ 609:1152–1160

Download references

The authors would like to thank the Regione Campania with grant no. B52C18000150007 for their financial support.

Author information

Authors and affiliations.

Sense Square srl, Piazza Vittorio Emanuele 11, 84084, Fisciano, SA, Italy

Daniele Sofia, Filomena Gioiella, Nicoletta Lotrecchiano & Aristide Giuliano

University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy

Daniele Sofia & Nicoletta Lotrecchiano

ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, Rotondella, MT, Italy

Aristide Giuliano

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Aristide Giuliano .

Additional information

Editorial Responsibility: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Sofia, D., Gioiella, F., Lotrecchiano, N. et al. Mitigation strategies for reducing air pollution. Environ Sci Pollut Res 27 , 19226–19235 (2020). https://doi.org/10.1007/s11356-020-08647-x

Download citation

Received : 06 December 2019

Accepted : 27 March 2020

Published : 11 April 2020

Issue Date : June 2020

DOI : https://doi.org/10.1007/s11356-020-08647-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Air pollution
  • Mitigation strategies
  • Human health
  • Environmental impact
  • Air quality
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. air pollution control model

    research proposal on air pollution

  2. (DOC) The research proposal on Air pollution

    research proposal on air pollution

  3. (PDF) Air Pollution Monitoring using GIS and Wireless Networking for

    research proposal on air pollution

  4. (PDF) Air Pollution

    research proposal on air pollution

  5. SOLUTION: 880890 a research proposal on air pollution

    research proposal on air pollution

  6. SOLUTION: Air pollution

    research proposal on air pollution

COMMENTS

  1. A statistical note: Proposal for air pollution as an ...

    Proposal for air pollution as an indicator for tracking progress toward SDGs on health (3), energy (7) and cities (11) Summary: Air pollution serves as important indicator for monitoring progress toward achieving the sustainable, equitable and healthy future we want. Improvements in air quality are a direct indication of

  2. (PDF) The Impacts of Air Pollution on Human Health and Well ...

    Abstract. Air pollution is a pressing global environmental challenge with far-reaching consequences for human health and well-being. This research paper presents an extensive examination of air ...

  3. Air Pollution Research Proposal Examples That Really Inspire ...

    In this free database of Air Pollution Research Proposal examples, you are provided with a thrilling opportunity to examine meaningful topics, content structuring techniques, text flow, formatting styles, and other academically acclaimed writing practices. Using them while composing your own Air Pollution Research Proposal will surely allow you ...

  4. Environmental and Health Impacts of Air Pollution: A Review

    Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders (3), leading to infant mortality or chronic disease in adult age (6). National reports have mentioned the increased risk of morbidity and mortality (1).

  5. The research proposal on Air pollution - Academia.edu

    2016. Presently, air pollution is a principal global health threats which is responsible for enhancing the chances for spreading of many chronic diseases. This problem occurred over past few decades due to fast growth in urbanization, industrialization and massive of vehicles volume in developed and under developed countries.

  6. (PDF) IoT-based air quality monitoring systems for smart ...

    The main contribution of this paper is to provide an ov erview of IoT-based air. quality monitoring systems for smart cities, by addressing a visual summary of the research status in this area ...

  7. Mitigation strategies for reducing air pollution - Springer

    Today, it is increasingly recognized that air pollution hurts human health. Consequently, efficient mitigation strategies need to be implemented for substantial environmental and health co-benefits. A valid approach to reducing the air pollution effects on the environment and human health is proposed. Specific guidelines have been elucidated by differentiating them on the base of the final ...

  8. Gaps and future directions in research on health effects of ...

    Despite progress in many countries, air pollution, and especially fine particulate matter air pollution (PM2.5) remains a global health threat: over 6 million premature cardiovascular and respiratory deaths/yr. have been attributed to household and outdoor air pollution. In this viewpoint, we identify present gaps in air pollution monitoring and regulation, and how they could be strengthened ...

  9. A statistical note:Proposal for air pollution as an indicator ...

    Air pollution serves as important indicator for monitoring progress toward achieving the sustainable, equitable and healthy future we want. Improvements in air quality are a direct indication of achievements in the policies and interventions implemented for sustainable energy (i.e. energy access, energy efficiency), sustainable consumption ...

  10. Interventions to reduce ambient air pollution and their ...

    In order to better reflect the reality of the air pollution research field, we included a wide range of study designs, including the study designs normally included in EPOC reviews (Cochrane EPOC, 2017), but also non-EPOC CBA studies. We summarized the heterogeneous evidence base narratively, but also created harvest plots with the aim of more ...