High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

In order to access this I need to be confident with:

Fraction word prob.

Fraction word problems

Here you will learn about fraction word problems, including solving math word problems within a real-world context involving adding fractions, subtracting fractions, multiplying fractions, and dividing fractions.

Students will first learn about fraction word problems as part of number and operations—fractions in 4 th grade.

What are fraction word problems?

Fraction word problems are math word problems involving fractions that require students to use problem-solving skills within the context of a real-world situation.

To solve a fraction word problem, you must understand the context of the word problem, what the unknown information is, and what operation is needed to solve it. Fraction word problems may require addition, subtraction, multiplication, or division of fractions.

After determining what operation is needed to solve the problem, you can apply the rules of adding, subtracting, multiplying, or dividing fractions to find the solution.

For example,

Natalie is baking 2 different batches of cookies. One batch needs \cfrac{3}{4} cup of sugar and the other batch needs \cfrac{2}{4} cup of sugar. How much sugar is needed to bake both batches of cookies?

You can follow these steps to solve the problem:

Fraction Word Problems 1 US

Step-by-step guide: Adding and subtracting fractions

Step-by-step guide: Adding fractions

Step-by-step guide: Subtracting fractions

Step-by-step guide: Multiplying and dividing fractions

Step-by-step guide: Multiplying fractions

Step-by-step guide: Dividing fractions

What are fraction word problems?

Common Core State Standards

How does this relate to 4 th grade math to 6 th grade math?

  • Grade 4: Number and Operations—Fractions (4.NF.B.3d) Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
  • Grade 4: Number and Operations—Fractions (4.NF.B.4c) Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat \cfrac{3}{8} of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
  • Grade 5: Number and Operations—Fractions (5.NF.A.2) Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result \cfrac{2}{5}+\cfrac{1}{2}=\cfrac{3}{7} by observing that \cfrac{3}{7}<\cfrac{1}{2} .
  • Grade 5: Number and Operations—Fractions (5.NF.B.6) Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
  • Grade 5: Number and Operations—Fractions (5.NF.B.7c) Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share \cfrac{1}{2} \: lb of chocolate equally? How many \cfrac{1}{3} cup servings are in 2 cups of raisins?
  • Grade 6: The Number System (6.NS.A.1) Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for \cfrac{2}{3} \div \cfrac{4}{5} and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that \cfrac{2}{3} \div \cfrac{4}{5}=\cfrac{8}{9} because \cfrac{3}{4} of \cfrac{8}{9} is \cfrac{2}{3}. (In general, \cfrac{a}{b} \div \cfrac{c}{d}=\cfrac{a d}{b c} \, ) How much chocolate will each person get if 3 people share \cfrac{1}{2} \: lb of chocolate equally? How many \cfrac{3}{4} cup servings are in \cfrac{2}{3} of a cup of yogurt? How wide is a rectangular strip of land with length \cfrac{3}{4} \: m and area \cfrac{1}{2} \: m^2?

[FREE] Fraction Operations Worksheet (Grade 4 to 6)

[FREE] Fraction Operations Worksheet (Grade 4 to 6)

Use this quiz to check your grade 4 to 6 students’ understanding of fraction operations. 10+ questions with answers covering a range of 4th to 6th grade fraction operations topics to identify areas of strength and support!

How to solve fraction word problems

In order to solve fraction word problems:

Determine what operation is needed to solve.

Write an equation.

Solve the equation.

State your answer in a sentence.

Fraction word problem examples

Example 1: adding fractions (like denominators).

Julia ate \cfrac{3}{8} of a pizza and her brother ate \cfrac{2}{8} of the same pizza. How much of the pizza did they eat altogether?

The problem states how much pizza Julia ate and how much her brother ate. You need to find how much pizza Julia and her brother ate altogether , which means you need to add.

2 Write an equation.

3 Solve the equation.

To add fractions with like denominators, add the numerators and keep the denominators the same.

4 State your answer in a sentence.

The last step is to go back to the word problem and write a sentence to clearly say what the solution represents in the context of the problem.

Julia and her brother ate \cfrac{5}{8} of the pizza altogether.

Example 2: adding fractions (unlike denominators)

Tim ran \cfrac{5}{6} of a mile in the morning and \cfrac{1}{3} of a mile in the afternoon. How far did Tim run in total?

The problem states how far Tim ran in the morning and how far he ran in the afternoon. You need to find how far Tim ran in total , which means you need to add.

To add fractions with unlike denominators, first find a common denominator and then change the fractions accordingly before adding.

\cfrac{5}{6}+\cfrac{1}{3}= \, ?

The least common multiple of 6 and 3 is 6, so 6 can be the common denominator.

That means \cfrac{1}{3} will need to be changed so that its denominator is 6. To do this, multiply the numerator and the denominator by 2.

\cfrac{1 \times 2}{3 \times 2}=\cfrac{2}{6}

Now you can add the fractions and simplify the answer.

\cfrac{5}{6}+\cfrac{2}{6}=\cfrac{7}{6}=1 \cfrac{1}{6}

Tim ran a total of 1 \cfrac{1}{6} miles.

Example 3: subtracting fractions (like denominators)

Pia walked \cfrac{4}{7} of a mile to the park and \cfrac{3}{7} of a mile back home. How much farther did she walk to the park than back home?

The problem states how far Pia walked to the park and how far she walked home. Since you need to find the difference ( how much farther ) between the two distances, you need to subtract.

To subtract fractions with like denominators, subtract the numerators and keep the denominators the same.

\cfrac{4}{7}-\cfrac{3}{7}=\cfrac{1}{7}

Pia walked \cfrac{1}{7} of a mile farther to the park than back home.

Example 4: subtracting fractions (unlike denominators)

Henry bought \cfrac{7}{8} pound of beef from the grocery store. He used \cfrac{1}{3} of a pound of beef to make a hamburger. How much of the beef does he have left?

The problem states how much beef Henry started with and how much he used. Since you need to find how much he has left , you need to subtract.

To subtract fractions with unlike denominators, first find a common denominator and then change the fractions accordingly before subtracting.

\cfrac{7}{8}-\cfrac{1}{3}= \, ?

The least common multiple of 8 and 3 is 24, so 24 can be the common denominator.

That means both fractions will need to be changed so that their denominator is 24.

To do this, multiply the numerator and the denominator of each fraction by the same number so that it results in a denominator of 24. This will give you an equivalent fraction for each fraction in the problem.

\begin{aligned}&\cfrac{7 \times 3}{8 \times 3}=\cfrac{21}{24} \\\\ &\cfrac{1 \times 8}{3 \times 8}=\cfrac{8}{24} \end{aligned}

Now you can subtract the fractions.

\cfrac{21}{24}-\cfrac{8}{24}=\cfrac{13}{24}

Henry has \cfrac{13}{24} of a pound of beef left.

Example 5: multiplying fractions

Andre has \cfrac{3}{4} of a candy bar left. He gives \cfrac{1}{2} of the remaining bit of the candy bar to his sister. What fraction of the whole candy bar does Andre have left now?

It could be challenging to determine the operation needed for this problem; many students may automatically assume it is subtraction since you need to find how much of the candy bar is left.

However, since you know Andre started with a fraction of the candy bar and you need to find a fraction OF a fraction, you need to multiply.

The difference here is that Andre did NOT give his sister \cfrac{1}{2} of the candy bar, but he gave her \cfrac{1}{2} of \cfrac{3}{4} of a candy bar.

To solve the word problem, you can ask, “What is \cfrac{1}{2} of \cfrac{3}{4}? ” and set up the equation accordingly. Think of the multiplication sign as meaning “of.”

\cfrac{1}{2} \times \cfrac{3}{4}= \, ?

To multiply fractions, multiply the numerators and multiply the denominators.

\cfrac{1}{2} \times \cfrac{3}{4}=\cfrac{3}{8}

Andre gave \cfrac{1}{2} of \cfrac{3}{4} of a candy bar to his sister, which means he has \cfrac{1}{2} of \cfrac{3}{4} left. Therefore, Andre has \cfrac{3}{8} of the whole candy bar left.

Example 6: dividing fractions

Nia has \cfrac{7}{8} cup of trail mix. How many \cfrac{1}{4} cup servings can she make?

The problem states the total amount of trail mix Nia has and asks how many servings can be made from it.

To solve, you need to divide the total amount of trail mix (which is \cfrac{7}{8} cup) by the amount in each serving ( \cfrac{1}{4} cup) to find out how many servings she can make.

To divide fractions, multiply the dividend by the reciprocal of the divisor.

\begin{aligned}& \cfrac{7}{8} \div \cfrac{1}{4}= \, ? \\\\ & \downarrow \downarrow \downarrow \\\\ &\cfrac{7}{8} \times \cfrac{4}{1}=\cfrac{28}{8} \end{aligned}

You can simplify \cfrac{28}{8} to \cfrac{7}{2} and then 3 \cfrac{1}{2}.

Nia can make 3 \cfrac{1}{2} cup servings.

Teaching tips for fraction word problems

  • Encourage students to look for key words to help determine the operation needed to solve the problem. For example, subtracting fractions word problems might ask students to find “how much is left” or “how much more” one fraction is than another.
  • Provide students with an answer key to word problem worksheets to allow them to obtain immediate feedback on their solutions. Encourage students to attempt the problems independently first, then check their answers against the key to identify any mistakes and learn from them. This helps reinforce problem-solving skills and confidence.
  • Be sure to incorporate real-world situations into your math lessons. Doing so allows students to better understand the relevance of fractions in everyday life.
  • As students progress and build a strong foundational understanding of one-step fraction word problems, provide them with multi-step word problems that involve more than one operation to solve.
  • Take note that students will not divide a fraction by a fraction as shown above until 6 th grade (middle school), but they will divide a unit fraction by a whole number and a whole number by a fraction in 5 th grade (elementary school), where the same mathematical rules apply to solving.
  • There are many alternatives you can use in place of printable math worksheets to make practicing fraction word problems more engaging. Some examples are online math games and digital workbooks.

Easy mistakes to make

  • Misinterpreting the problem Misreading or misunderstanding the word problem can lead to solving for the wrong quantity or using the wrong operation.
  • Not finding common denominators When adding or subtracting fractions with unlike denominators, students may forget to find a common denominator, leading to an incorrect answer.
  • Forgetting to simplify Unless a problem specifically says not to simplify, fractional answers should always be written in simplest form.

Related fractions operations lessons

  • Fractions operations
  • Multiplicative inverse
  • Reciprocal math
  • Fractions as divisions

Practice fraction word problem questions

1. Malia spent \cfrac{5}{6} of an hour studying for a math test. Then she spent \cfrac{1}{3} of an hour reading. How much longer did she spend studying for her math test than reading?

Malia spent \cfrac{1}{2} of an hour longer studying for her math test than reading.

GCSE Quiz True

Malia spent \cfrac{5}{18} of an hour longer studying for her math test than reading.

GCSE Quiz False

Malia spent \cfrac{1}{2} of an hour longer reading than studying for her math test.

Malia spent 1 \cfrac{1}{6} of an hour longer studying for her math test than reading.

To find the difference between the amount of time Malia spent studying for her math test than reading, you need to subtract. Since the fractions have unlike denominators, you need to find a common denominator first.

You can use 6 as the common denominator, so \cfrac{1}{3} becomes \cfrac{3}{6}. Then you can subtract.

\cfrac{3}{6} can then be simplified to \cfrac{1}{2}.

Finally, you need to choose the answer that correctly answers the question within the context of the situation. Therefore, the correct answer is “Malia spent \cfrac{1}{2} of an hour longer studying for her math test than reading.”

2. A square garden is \cfrac{3}{4} of a meter wide and \cfrac{8}{9} of a meter long. What is its area?

The area of the garden is 1\cfrac{23}{36} square meters.

The area of the garden is \cfrac{27}{32} square meters.

The area of the garden is \cfrac{2}{3} square meters.

The perimeter of the garden is \cfrac{2}{3} meters.

To find the area of a square, you multiply the length and width. So to solve, you multiply the fractional lengths by mulitplying the numerators and multiplying the denominators.

\cfrac{24}{36} can be simplified to \cfrac{2}{3}. 

Therefore, the correct answer is “The area of the garden is \cfrac{2}{3} square meters.”

3. Zoe ate \cfrac{3}{8} of a small cake. Liam ate \cfrac{1}{8} of the same cake. How much more of the cake did Zoe eat than Liam?

Zoe ate \cfrac{3}{64} more of the cake than Liam.

Zoe ate \cfrac{1}{4} more of the cake than Liam.

Zoe ate \cfrac{1}{8} more of the cake than Liam.

Liam ate \cfrac{1}{4} more of the cake than Zoe.

To find how much more cake Zoe ate than Liam, you subtract. Since the fractions have the same denominator, you subtract the numerators and keep the denominator the same.

\cfrac{2}{8} can be simplified to \cfrac{1}{4}. 

Therefore, the correct answer is “Zoe ate \cfrac{1}{4} more of the cake than Liam.”

4. Lila poured \cfrac{11}{12} cup of pineapple and \cfrac{2}{3} cup of mango juice in a bottle. How many cups of juice did she pour into the bottle altogether?

Lila poured 1 \cfrac{7}{12} cups of juice in the bottle altogether.

Lila poured \cfrac{1}{4} cups of juice in the bottle altogether.

Lila poured \cfrac{11}{18} cups of juice in the bottle altogether.

Lila poured 1 \cfrac{3}{8} cups of juice in the bottle altogether.

To find the total amount of juice that Lila poured into the bottle, you need to add. Since the fractions have unlike denominators, you need to find a common denominator first.

You can use 12 as the common denominator, so \cfrac{2}{3} becomes \cfrac{8}{12}.  Then you can add.

\cfrac{19}{12} can be simplified to 1 \cfrac{7}{12}. 

Therefore, the correct answer is “Lila poured 1 \cfrac{7}{12} cups of juice in the bottle altogether.”

5. Killian used \cfrac{9}{10} of a gallon of paint to paint his living room and \cfrac{7}{10} of a gallon to paint his bedroom. How much paint did Killian use in all?

Killian used \cfrac{2}{10} gallons of paint in all.

Killian used \cfrac{1}{5} gallons of paint in all.

Killian used \cfrac{63}{100} gallons of paint in all.

Killian used 1 \cfrac{3}{5} gallons of paint in all.

To find the total amount of paint Killian used, you add the amount he used for the living room and the amount he used for the kitchen. Since the fractions have the same denominator, you add the numerators and keep the denominators the same.

\cfrac{16}{10} can be simplified to 1 \cfrac{6}{10} and then further simplified to 1 \cfrac{3}{5}.

Therefore, the correct answer is “Killian used 1 \cfrac{3}{5} gallons of paint in all.”

6. Evan pours \cfrac{4}{5} of a liter of orange juice evenly among some cups.

He put \cfrac{1}{10} of a liter into each cup. How many cups did Evan fill?

Evan filled \cfrac{2}{25} cups.

Evan filled 8 cups.

Evan filled \cfrac{9}{10} cups.

Evan filled 7 cups.

To find the number of cups Evan filled, you need to divide the total amount of orange juice by the amount being poured into each cup. To divide fractions, you mulitply the first fraction (the dividend) by the reciprocal of the second fraction (the divisor).

\cfrac{40}{5} can be simplifed to 8.

Therefore, the correct answer is “Evan filled 8 cups.”

Fraction word problems FAQs

Fraction word problems are math word problems involving fractions that require students to use problem-solving skills within the context of a real-world situation. Fraction word problems may involve addition, subtraction, multiplication, or division of fractions.

To solve fraction word problems, first you need to determine the operation. Then you can write an equation and solve the equation based on the arithmetic rules for that operation.

Fraction word problems and decimal word problems are similar because they both involve solving math problems within real-world contexts. Both types of problems require understanding the problem, determining the operation needed to solve it (addition, subtraction, multiplication, division), and solving it based on the arithmetic rules for that operation.

The next lessons are

Still stuck.

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs .

[FREE] Common Core Practice Tests (3rd to 8th Grade)

Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.

Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!

Privacy Overview

MATH Worksheets 4 Kids

Child Login

  • Kindergarten
  • Number charts
  • Skip Counting
  • Place Value
  • Number Lines
  • Subtraction
  • Multiplication
  • Word Problems
  • Comparing Numbers
  • Ordering Numbers
  • Odd and Even
  • Prime and Composite
  • Roman Numerals
  • Ordinal Numbers
  • In and Out Boxes
  • Number System Conversions
  • More Number Sense Worksheets
  • Size Comparison
  • Measuring Length
  • Metric Unit Conversion
  • Customary Unit Conversion
  • Temperature
  • More Measurement Worksheets
  • Writing Checks
  • Profit and Loss
  • Simple Interest
  • Compound Interest
  • Tally Marks
  • Mean, Median, Mode, Range
  • Mean Absolute Deviation
  • Stem-and-leaf Plot
  • Box-and-whisker Plot
  • Permutation and Combination
  • Probability
  • Venn Diagram
  • More Statistics Worksheets
  • Shapes - 2D
  • Shapes - 3D
  • Lines, Rays and Line Segments
  • Points, Lines and Planes
  • Transformation
  • Quadrilateral
  • Ordered Pairs
  • Midpoint Formula
  • Distance Formula
  • Parallel, Perpendicular and Intersecting Lines
  • Scale Factor
  • Surface Area
  • Pythagorean Theorem
  • More Geometry Worksheets
  • Converting between Fractions and Decimals
  • Significant Figures
  • Convert between Fractions, Decimals, and Percents
  • Proportions
  • Direct and Inverse Variation
  • Order of Operations
  • Squaring Numbers
  • Square Roots
  • Scientific Notations
  • Speed, Distance, and Time
  • Absolute Value
  • More Pre-Algebra Worksheets
  • Translating Algebraic Phrases
  • Evaluating Algebraic Expressions
  • Simplifying Algebraic Expressions
  • Algebraic Identities
  • Quadratic Equations
  • Systems of Equations
  • Polynomials
  • Inequalities
  • Sequence and Series
  • Complex Numbers
  • More Algebra Worksheets
  • Trigonometry
  • Math Workbooks
  • English Language Arts
  • Summer Review Packets
  • Social Studies
  • Holidays and Events
  • Worksheets >
  • Pre-Algebra >
  • Fractions >

Fraction Word Problem Worksheets

Featured here is a vast collection of fraction word problems, which require learners to simplify fractions, add like and unlike fractions; subtract like and unlike fractions; multiply and divide fractions. The fraction word problems include proper fraction, improper fraction, and mixed numbers. Solve each word problem and scroll down each printable worksheet to verify your solutions using the answer key provided. Thumb through some of these word problem worksheets for free!

Represent and Simplify the Fractions: Type 1

Represent and Simplify the Fractions: Type 1

Presented here are the fraction pdf worksheets based on real-life scenarios. Read the basic fraction word problems, write the correct fraction and reduce your answer to the simplest form.

  • Download the set

Represent and Simplify the Fractions: Type 2

Represent and Simplify the Fractions: Type 2

Before representing in fraction, children should perform addition or subtraction to solve these fraction word problems. Write your answer in the simplest form.

Adding Fractions Word Problems Worksheets

Adding Fractions Word Problems Worksheets

Conjure up a picture of how adding fractions plays a significant role in our day-to-day lives with the help of the real-life scenarios and circumstances presented as word problems here.

(15 Worksheets)

Subtracting Fractions Word Problems Worksheets

Subtracting Fractions Word Problems Worksheets

Crank up your skills with this set of printable worksheets on subtracting fractions word problems presenting real-world situations that involve fraction subtraction!

Multiplying Fractions Word Problems Worksheets

Multiplying Fractions Word Problems Worksheets

This set of printables is for the ardently active children! Explore the application of fraction multiplication and mixed-number multiplication in the real world with this exhilarating practice set.

Fraction Division Word Problems Worksheets

Fraction Division Word Problems Worksheets

Gift children a broad view of the real-life application of dividing fractions! Let them divide fractions by whole numbers, divide 2 fractions, divide mixed numbers, and solve the word problems here.

Related Worksheets

» Decimal Word Problems

» Ratio Word Problems

» Division Word Problems

» Math Word Problems

Become a Member

Membership Information

Printing Help

How to Use Online Worksheets

How to Use Printable Worksheets

Privacy Policy

Terms of Use

Facebook

Copyright © 2024 - Math Worksheets 4 Kids

This is a members-only feature!

Happy Learning!

Algebra: Fraction Problems

Related Topics: More Algebra Word Problems

In these lessons, we will learn how to solve fraction word problems that deal with fractions and algebra. Remember to read the question carefully to determine the numerator and denominator of the fraction.

We will also learn how to solve word problems that involve comparing fractions, adding mixed numbers, subtracting mixed numbers, multiplying fractions and dividing fractions.

Fraction Word Problems using Algebra

Example: 2/3 of a number is 14. What is the number?

Answer: The number is 21.

Example: The numerator of a fraction is 3 less than the denominator. When both the numerator and denominator are increased by 4, the fraction is increased by fraction.

Solution: Let the numerator be x, then the denominator is x + 3, and the fraction is \(\frac{x}{{x + 3}}\) When the numerator and denominator are increased by 4, the fraction is \(\frac{{x + 4}}{{x + 7}}\) \(\frac{{x + 4}}{{x + 7}} - \frac{x}{{x + 3}} = \frac{{12}}{{77}}\) 77(x + 4)(x + 3) – 77x(x+7) = 12(x + 7)(x + 3) 77x 2 + 539x + 924 – 77x 2 – 539x = 12x 2 + 120x + 252 12x 2 + 120x – 672 = 0 x 2 + 10x – 56 = 0 (x – 4)(x + 14) = 0 x = 4 (negative answer not applicable in this case)

How to solve Fraction Word Problems using Algebra? Examples: (1) The denominator of a fraction is 5 more than the numerator. If 1 is subtracted from the numerator, the resulting fraction is 1/3. Find the original fraction. (2) If 3 is subtracted from the numerator of a fraction, the value of the resulting fraction is 1/2. If 13 is added to the denominator of the original fraction, the value of the new fraction is 1/3. Find the original fraction. (3) A fraction has a value of 3/4. When 14 is added to the numerator, the resulting fraction has a value equal to the reciprocal of the original fraction, Find the original fraction.

Algebra Word Problems with Fractional Equations Solving a fraction equation that appears in a word problem Example: One third of a number is 6 more than one fourth of the number. Find the number.

Fraction and Decimal Word Problems How to solve algebra word problems with fractions and decimals? Examples: (1) If 1/2 of the cards had been sold and there were 172 cards left, how many cards were printed? (2) Only 1/3 of the university students wanted to become teachers. If 3,360 did not wan to become teachers, how many university were there? (3) Rodney guessed the total was 34.71, but this was 8.9 times the total. What was the total?

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Fraction Worksheets

Conversion :: Addition :: Subtraction :: Multiplication :: Division

Conversions

Fractions - addition, fractions - subtraction, fractions - multiplication, fractions - division.

problem solving of fractions

Home / United States / Math Classes / 5th Grade Math / Problem Solving using Fractions

Problem Solving using Fractions

Fractions are numbers that exist between whole numbers. We get fractions when we divide whole numbers into equal parts. Here we will learn to solve some real-life problems using fractions. ...Read More Read Less

Table of Contents

problem solving of fractions

What are Fractions?

Types of fractions.

  • Fractions with like and unlike denominators
  • Operations on fractions
  • Fractions can be multiplied by using
  • Let’s take a look at a few examples

Solved Examples

  • Frequently Asked Questions

Equal parts of a whole or a collection of things are represented by fractions . In other words a fraction is a part or a portion of the whole. When we divide something into equal pieces, each part becomes a fraction of the whole.

For example in the given figure, one pizza represents a whole. When cut into 2 equal parts, each part is half of the whole, that can be represented by the fraction  \(\frac{1}{2}\) . 

Similarly, if it is divided into 4 equal parts, then each part is one fourth of the whole, that can be represented by the fraction \(\frac{1}{4}\) .

new1

Proper fractions

A fraction in which the numerator is less than the denominator value is called a  proper fraction.

For example ,  \(\frac{3}{4}\) ,  \(\frac{5}{7}\) ,  \(\frac{3}{8}\)   are proper fractions.

Improper fractions 

A fraction with the numerator higher than or equal to the denominator is called an improper fraction .

Eg \(\frac{9}{4}\) ,  \(\frac{8}{8}\) ,  \(\frac{9}{4}\)   are examples of improper fractions.

Mixed fractions

A mixed number or a mixed fraction is a type of fraction which is a combination of both a whole number and a proper fraction.

We express improper fractions as mixed numbers.

For example ,  5\(\frac{1}{3}\) ,  1\(\frac{4}{9}\) ,  13\(\frac{7}{8}\)   are mixed fractions.

Unit fraction

A unit fraction is a fraction with a numerator equal to one. If a whole or a collection is divided into equal parts, then exactly 1 part of the total parts represents a unit fraction .

new2

Fractions with Like and Unlike Denominators

Like fractions are those in which two or more fractions have the same denominator, whereas unlike fractions are those in which the denominators of two or more fractions are different.

For example,  

\(\frac{1}{4}\)  and  \(\frac{3}{4}\)  are like fractions as they both have the same denominator, that is, 4.

\(\frac{1}{3}\)  and  \(\frac{1}{4}\)   are unlike fractions as they both have a different denominator.

Operations on Fractions

We can perform addition, subtraction, multiplication and division operations on fractions.

Fractions with unlike denominators can be added or subtracted using equivalent fractions. Equivalent fractions can be obtained by finding a common denominator. And a common denominator is obtained either by determining a common multiple of the denominators or by calculating the product of the denominators.

There is another method to add or subtract mixed numbers, that is, solve the fractional and whole number parts separately, and then, find their sum to get the final answer.

Fractions can be Multiplied by Using:

Division operations on fractions can be performed using a tape diagram and area model. Also, when a fraction is divided by another fraction then we can solve it by multiplying the dividend with the reciprocal of the divisor. 

Let’s Take a Look at a Few Examples

Addition and subtraction using common denominator

( \(\frac{1}{6} ~+ ~\frac{2}{5}\) )

We apply the method of equivalent fractions. For this we need a common denominator, or a common multiple of the two denominators 6 and 5, that is, 30.

\(\frac{1}{6} ~+ ~\frac{2}{5}\)

= \(\frac{5~+~12}{30}\)  

=  \(\frac{17}{30}\) 

( \(\frac{5}{2}~-~\frac{1}{6}\) )

= \(\frac{12~-~5}{30}\)

= \(\frac{7}{30}\)

Examples of Multiplication and Division

Multiplication:

(\(\frac{1}{6}~\times~\frac{2}{5}\))

= (\(\frac{1~\times~2}{6~\times~5}\))                                       [Multiplying numerator of fractions and multiplying denominator of fractions]

=  \(\frac{2}{30}\)

(\(\frac{2}{5}~÷~\frac{1}{6}\))

= (\(\frac{2 ~\times~ 5}{6~\times~ 1}\))                                     [Multiplying dividend with the reciprocal of divisor]

= (\(\frac{2 ~\times~ 6}{5 ~\times~ 1}\))

= \(\frac{12}{5}\)

Example 1: Solve \(\frac{7}{8}\) + \(\frac{2}{3}\)

Let’s add \(\frac{7}{8}\)  and  \(\frac{2}{3}\)   using equivalent fractions. For this we need to find a common denominator or a common multiple of the two denominators 8 and 3, which is, 24.

\(\frac{7}{8}\) + \(\frac{2}{3}\)

= \(\frac{21~+~16}{24}\)    

= \(\frac{37}{24}\)

Example 2: Solve \(\frac{11}{13}\) – \(\frac{12}{17}\)

Solution:  

Let’s subtract  \(\frac{12}{17}\) from \(\frac{11}{13}\)   using equivalent fractions. For this we need a common denominator or a common multiple of the two denominators 13 and 17, that is, 221.

\(\frac{11}{13}\) – \(\frac{12}{17}\)

= \(\frac{187~-~156}{221}\)

= \(\frac{31}{221}\)

Example 3: Solve \(\frac{15}{13} ~\times~\frac{18}{17}\)

Multiply the numerators and multiply the denominators of the 2 fractions.

\(\frac{15}{13}~\times~\frac{18}{17}\)

= \(\frac{15~~\times~18}{13~~\times~~17}\)

= \(\frac{270}{221}\)

Example 4: Solve \(\frac{25}{33}~\div~\frac{41}{45}\)

Divide by multiplying the dividend with the reciprocal of the divisor.

\(\frac{25}{33}~\div~\frac{41}{45}\)

= \(\frac{25}{33}~\times~\frac{41}{45}\)                            [Multiply with reciprocal of the divisor \(\frac{41}{45}\) , that is, \(\frac{45}{41}\)  ]

= \(\frac{25~\times~45}{33~\times~41}\)

= \(\frac{1125}{1353}\)

Example 5: 

Sam was left with   \(\frac{7}{8}\)  slices of chocolate cake and    \(\frac{3}{7}\)  slices of vanilla cake after he shared the rest with his friends. Find out the total number of slices of cake he had with him. Sam shared   \(\frac{10}{11}\)  slices from the total number he had with his parents. What is the number of slices he has remaining?

To find the total number of slices of cake he had after sharing we need to add the slices of each cake he had,

=   \(\frac{7}{8}\) +   \(\frac{3}{7}\)   

=   \(\frac{49~+~24}{56}\)

=   \(\frac{73}{56}\)

To find out the remaining number of slices Sam has   \(\frac{10}{11}\)  slices need to be deducted from the total number,

= \(\frac{73}{56}~-~\frac{10}{11}\)

=   \(\frac{803~-~560}{616}\)

=   \(\frac{243}{616}\)

Hence, after sharing the cake with his friends, Sam has  \(\frac{73}{56}\) slices of cake, and after sharing with his parents he had  \(\frac{243}{616}\)  slices of cake left with him.

Example 6: Tiffany squeezed oranges to make orange juice for her juice stand. She was able to get 25 ml from one orange. How many oranges does she need to squeeze to fill a jar of   \(\frac{15}{8}\) liters? Each cup that she sells carries 200 ml and she sells each cup for 64 cents. How much money does she make at her juice stand?

First  \(\frac{15}{8}\) l needs to be converted to milliliters.

\(\frac{15}{8}\)l into milliliters =  \(\frac{15}{8}\) x 1000 = 1875 ml

To find the number of oranges, divide the total required quantity by the quantity of juice that one orange can give.

The number of oranges required for 1875 m l of juice =  \(\frac{1875}{25}\) ml = 75 oranges

To find the number of cups she sells, the total quantity of juice is to be divided by the quantity of juice that 1 cup has

=  \(\frac{1875}{200}~=~9\frac{3}{8}\) cups

We know that, the number of cups cannot be a fraction, it has to be a whole number. Also each cup must have 200ml. Hence with the quantity of juice she has she can sell 9 cups,   \(\frac{3}{8}\) th  of a cup cannot be sold alone.

Money made on selling 9 cups = 9 x 64 = 576 cents

Hence she makes 576 cents from her juice stand.

What is a mixed fraction?

A mixed fraction is a number that has a whole number and a fractional part. It is used to represent values between whole numbers.

How will you add fractions with unlike denominators?

When adding fractions with unlike denominators, take the common multiple of the denominators of both the fractions and then convert them into equivalent fractions. 

Check out our other courses

Grades 1 - 12

Level 1 - 10

COMMENTS

  1. Word Problems with Fractions | Examples & Solutions - Smartick

    Word problems with fractions: involving a fraction and a whole number. Finally, we are going to look at an example of a word problem with a fraction and a whole number. Now we will have to convert all the information into a fraction with the same denominator (as we did in the example above) in order to calculate. This morning Miguel bought 1 ...

  2. Fraction Word Problems: Examples - Online Math Help And ...

    Fraction Word Problems, The first example is a one-step word problem, The second example shows how blocks can be used to help illustrate the problem, The third example is a two-step word problem, bar modeling method in Singapore Math, Word Problem on Subtracting Fractions From Whole Numbers, with video lessons, examples and step-by-step solutions.

  3. Fraction Word Problems - Math Steps, Examples & Questions

    Fraction word problems are math word problems involving fractions that require students to use problem-solving skills within the context of a real-world situation. To solve a fraction word problem, you must understand the context of the word problem, what the unknown information is, and what operation is needed to solve it.

  4. Fraction Word Problems (Difficult) - Online Math Help And ...

    Fraction Word Problems - using block models (tape diagrams), Solve a problem involving fractions of fractions and fractions of remaining parts, how to solve a four step fraction word problem using tape diagrams, grade 5, grade 6, grade 7, with video lessons, examples and step-by-step solutions.

  5. Fraction Word Problems Worksheets - Math Worksheets 4 Kids

    Presented here are the fraction pdf worksheets based on real-life scenarios. Read the basic fraction word problems, write the correct fraction and reduce your answer to the simplest form. Download the set. Represent and Simplify the Fractions: Type 2. Before representing in fraction, children should perform addition or subtraction to solve ...

  6. Solving Word Problems by Adding and Subtracting Fractions and ...

    Answer: The carpenter needs to cut four and seven-twelfths feet of wood. Summary: In this lesson we learned how to solve word problems involving addition and subtraction of fractions and mixed numbers. We used the following skills to solve these problems: Add fractions with like denominators. Subtract fractions with like denominators.

  7. Fraction Word Problem Worksheets - Math Goodies

    How to Solve Fraction Word Problems. Step 1) Read the Problem Carefully – Understand what the problem is asking. Identify the parts of the problem that relate to fractions. Step 2) Identify the Fractions – Determine what the fractions represent in the problem. This could be a part of a whole, a division of a quantity, or a rate.

  8. Algebra: Fraction Problems - Online Math Help And Learning ...

    How to solve Fraction Word Problems using Algebra? Examples: (1) The denominator of a fraction is 5 more than the numerator. If 1 is subtracted from the numerator, the resulting fraction is 1/3. Find the original fraction. (2) If 3 is subtracted from the numerator of a fraction, the value of the resulting fraction is 1/2.

  9. Fraction Worksheets - Math is Fun

    Worksheet. Example. Fractions (Same Denominator) 1 5 × 2 5. Unit Fractions. 1 3 × 1 9. Easy Proper Fractions. 3 8 × 2 7. Harder Proper Fractions.

  10. Problem Solving using Fractions (Definition, Types and ...

    A mixed number or a mixed fraction is a type of fraction which is a combination of both a whole number and a proper fraction. We express improper fractions as mixed numbers. For example, 5\(\frac{1}{3}\), 1\(\frac{4}{9}\), 13\(\frac{7}{8}\) are mixed fractions. Unit fraction. A unit fraction is a fraction with a numerator equal to one.