Nuclear Energy

Nuclear energy is the energy in the nucleus, or core, of an atom. Nuclear energy can be used to create electricity, but it must first be released from the atom.

Engineering, Physics

Loading ...

Nuclear energy is the energy in the nucleus , or core, of an atom . Atoms are tiny units that make up all matter in the universe , and energy is what holds the nucleus together. There is a huge amount of energy in an atom 's dense nucleus . In fact, the power that holds the nucleus together is officially called the " strong force ." Nuclear energy can be used to create electricity , but it must first be released from the atom . In the process of  nuclear fission , atoms are split to release that energy. A nuclear reactor , or power plant , is a series of machines that can control nuclear fission to produce electricity . The fuel that nuclear reactors use to produce nuclear fission is pellets of the element uranium . In a nuclear reactor , atoms of uranium are forced to break apart. As they split, the atoms release tiny particles called fission products. Fission products cause other uranium atoms to split, starting a chain reaction . The energy released from this chain reaction creates heat. The heat created by nuclear fission warms the reactor's cooling agent . A cooling agent is usually water, but some nuclear reactors use liquid metal or molten salt . The cooling agent , heated by nuclear fission , produces steam . The steam turns turbines , or wheels turned by a flowing current . The turbines drive generators , or engines that create electricity . Rods of material called nuclear poison can adjust how much electricity is produced. Nuclear poisons are materials, such as a type of the element xenon , that absorb some of the fission products created by nuclear fission . The more rods of nuclear poison that are present during the chain reaction , the slower and more controlled the reaction will be. Removing the rods will allow a stronger chain reaction and create more electricity . As of 2011, about 15 percent of the world's electricity is generated by nuclear power plants . The United States has more than 100 reactors, although it creates most of its electricity from fossil fuels and hydroelectric energy . Nations such as Lithuania, France, and Slovakia create almost all of their electricity from nuclear power plants . Nuclear Food: Uranium Uranium is the fuel most widely used to produce nuclear energy . That's because uranium atoms split apart relatively easily. Uranium is also a very common element, found in rocks all over the world. However, the specific type of uranium used to produce nuclear energy , called U-235 , is rare. U-235 makes up less than one percent of the uranium in the world.

Although some of the uranium the United States uses is mined in this country, most is imported . The U.S. gets uranium from Australia, Canada, Kazakhstan, Russia, and Uzbekistan. Once uranium is mined, it must be extracted from other minerals . It must also be processed before it can be used. Because nuclear fuel can be used to create nuclear weapons as well as nuclear reactors , only nations that are part of the Nuclear Non-Proliferation Treaty (NPT) are allowed to import uranium or plutonium , another nuclear fuel . The treaty promotes the peaceful use of nuclear fuel , as well as limiting the spread of nuclear weapons . A typical nuclear reactor uses about 200 tons of uranium every year. Complex processes allow some uranium and plutonium to be re-enriched or recycled . This reduces the amount of mining , extracting , and processing that needs to be done. Nuclear Energy and People Nuclear energy produces electricity that can be used to power homes, schools, businesses, and hospitals. The first nuclear reactor to produce electricity was located near Arco, Idaho. The Experimental Breeder Reactor began powering itself in 1951. The first nuclear power plant designed to provide energy to a community was established in Obninsk, Russia, in 1954. Building nuclear reactors requires a high level of technology , and only the countries that have signed the Nuclear Non-Proliferation Treaty can get the uranium or plutonium that is required. For these reasons, most nuclear power plants are located in the developed world. Nuclear power plants produce renewable, clean energy . They do not pollute the air or release  greenhouse gases . They can be built in urban or rural areas , and do not radically alter the environment around them. The steam powering the turbines and generators is ultimately recycled . It is cooled down in a separate structure called a cooling tower . The steam turns back into water and can be used again to produce more electricity . Excess steam is simply recycled into the atmosphere , where it does little harm as clean water vapor . However, the byproduct of nuclear energy is radioactive material. Radioactive material is a collection of unstable atomic nuclei . These nuclei lose their energy and can affect many materials around them, including organisms and the environment. Radioactive material can be extremely toxic , causing burns and increasing the risk for cancers , blood diseases, and bone decay .

Radioactive waste is what is left over from the operation of a nuclear reactor . Radioactive waste is mostly protective clothing worn by workers, tools, and any other material that have been in contact with radioactive dust. Radioactive waste is long-lasting. Materials like clothes and tools can stay radioactive for thousands of years. The government regulates how these materials are disposed of so they don't contaminate anything else. Used fuel and rods of nuclear poison are extremely radioactive . The used uranium pellets must be stored in special containers that look like large swimming pools. Water cools the fuel and insulates the outside from contact with the radioactivity. Some nuclear plants store their used fuel in dry storage tanks above ground. The storage sites for radioactive waste have become very controversial in the United States. For years, the government planned to construct an enormous nuclear waste facility near Yucca Mountain, Nevada, for instance. Environmental groups and local citizens protested the plan. They worried about radioactive waste leaking into the water supply and the Yucca Mountain environment, about 130 kilometers (80 miles) from the large urban area of Las Vegas, Nevada. Although the government began investigating the site in 1978, it stopped planning for a nuclear waste facility in Yucca Mountain in 2009. Chernobyl Critics of nuclear energy worry that the storage facilities for radioactive waste will leak, crack, or erode . Radioactive material could then contaminate the soil and groundwater near the facility . This could lead to serious health problems for the people and organisms in the area. All communities would have to be evacuated . This is what happened in Chernobyl, Ukraine, in 1986. A steam explosion at one of the power plants four nuclear reactors caused a fire, called a plume . This plume was highly radioactive , creating a cloud of radioactive particles that fell to the ground, called fallout . The fallout spread over the Chernobyl facility , as well as the surrounding area. The fallout drifted with the wind, and the particles entered the water cycle as rain. Radioactivity traced to Chernobyl fell as rain over Scotland and Ireland. Most of the radioactive fallout fell in Belarus.

The environmental impact of the Chernobyl disaster was immediate . For kilometers around the facility , the pine forest dried up and died. The red color of the dead pines earned this area the nickname the Red Forest . Fish from the nearby Pripyat River had so much radioactivity that people could no longer eat them. Cattle and horses in the area died. More than 100,000 people were relocated after the disaster , but the number of human victims of Chernobyl is difficult to determine . The effects of radiation poisoning only appear after many years. Cancers and other diseases can be very difficult to trace to a single source. Future of Nuclear Energy Nuclear reactors use fission, or the splitting of atoms , to produce energy. Nuclear energy can also be produced through fusion, or joining (fusing) atoms together. The sun, for instance, is constantly undergoing nuclear fusion as hydrogen atoms fuse to form helium . Because all life on our planet depends on the sun, you could say that nuclear fusion makes life on Earth possible. Nuclear power plants do not have the capability to safely and reliably produce energy from nuclear fusion . It's not clear whether the process will ever be an option for producing electricity . Nuclear engineers are researching nuclear fusion , however, because the process will likely be safe and cost-effective.

Nuclear Tectonics The decay of uranium deep inside the Earth is responsible for most of the planet's geothermal energy, causing plate tectonics and continental drift.

Three Mile Island The worst nuclear accident in the United States happened at the Three Mile Island facility near Harrisburg, Pennsylvania, in 1979. The cooling system in one of the two reactors malfunctioned, leading to an emission of radioactive fallout. No deaths or injuries were directly linked to the accident.

Articles & Profiles

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Create an account

Create a free IEA account to download our reports or subcribe to a paid service.

Nuclear Power in a Clean Energy System

About this report.

With nuclear power facing an uncertain future in many countries, the world risks a steep decline in its use in advanced economies that could result in billions of tonnes of additional carbon emissions. Some countries have opted out of nuclear power in light of concerns about safety and other issues. Many others, however, still see a role for nuclear in their energy transitions but are not doing enough to meet their goals.

The publication of the IEA's first report addressing nuclear power in nearly two decades brings this important topic back into the global energy debate.

Key findings

Nuclear power is the second-largest source of low-carbon electricity today.

Nuclear power is the second-largest source of low-carbon electricity today, with 452 operating reactors providing 2700 TWh of electricity in 2018, or 10% of global electricity supply.

In advanced economies, nuclear has long been the largest source of low-carbon electricity, providing 18% of supply in 2018. Yet nuclear is quickly losing ground. While 11.2 GW of new nuclear capacity was connected to power grids globally in 2018 – the highest total since 1990 – these additions were concentrated in China and Russia.

Global low-carbon power generation by source, 2018

Cumulative co2 emissions avoided by global nuclear power in selected countries, 1971-2018, an aging nuclear fleet.

In the absense of further lifetime extensions and new projects could result in an additional 4 billion tonnes of CO2 emissions, underlining the importance of the nuclear fleet to low-carbon energy transitions around the globe. In emerging and developing economies, particularly China, the nuclear fleet will provide low-carbon electricity for decades to come.

However the nuclear fleet in advanced economies is 35 years old on average and many plants are nearing the end of their designed lifetimes. Given their age, plants are beginning to close, with 25% of existing nuclear capacity in advanced economies expected to be shut down by 2025.

It is considerably cheaper to extend the life of a reactor than build a new plant, and costs of extensions are competitive with other clean energy options, including new solar PV and wind projects. Nevertheless they still represent a substantial capital investment. The estimated cost of extending the operational life of 1 GW of nuclear capacity for at least 10 years ranges from $500 million to just over $1 billion depending on the condition of the site.

However difficult market conditions are a barrier to lifetime extension investments. An extended period of low wholesale electricity prices in most advanced economies has sharply reduced or eliminated margins for many technologies, putting nuclear at risk of shutting down early if additional investments are needed. As such, the feasibility of extensions depends largely on domestic market conditions.

Age profile of nuclear power capacity in selected regions, 2019

United states, levelised cost of electricity in the united states, 2040, european union, levelised cost of electricity in the european union, 2040, levelised cost of electricity in japan, 2040, the nuclear fade case, nuclear capacity operating in selected advanced economies in the nuclear fade case, 2018-2040, wind and solar pv generation by scenario 2019-2040, policy recommendations.

In this context, countries that intend to retain the option of nuclear power should consider the following actions:

  • Keep the option open:  Authorise lifetime extensions of existing nuclear plants for as long as safely possible. 
  • Value dispatchability:  Design the electricity market in a way that properly values the system services needed to maintain electricity security, including capacity availability and frequency control services. Make sure that the providers of these services, including nuclear power plants, are compensated in a competitive and non-discriminatory manner.
  • Value non-market benefits:  Establish a level playing field for nuclear power with other low-carbon energy sources in recognition of its environmental and energy security benefits and remunerate it accordingly.
  • Update safety regulations:  Where necessary, update safety regulations in order to ensure the continued safe operation of nuclear plants. Where technically possible, this should include allowing flexible operation of nuclear power plants to supply ancillary services.
  • Create a favourable financing framework:  Create risk management and financing frameworks that facilitate the mobilisation of capital for new and existing plants at an acceptable cost taking the risk profile and long time-horizons of nuclear projects into consideration.
  • Support new construction:  Ensure that licensing processes do not lead to project delays and cost increases that are not justified by safety requirements.
  • Support innovative new reactor designs:  Accelerate innovation in new reactor designs with lower capital costs and shorter lead times and technologies that improve the operating flexibility of nuclear power plants to facilitate the integration of growing wind and solar capacity into the electricity system.
  • Maintain human capital:  Protect and develop the human capital and project management capabilities in nuclear engineering.

Executive summary

Nuclear power can play an important role in clean energy transitions.

Nuclear power today makes a significant contribution to electricity generation, providing 10% of global electricity supply in 2018.  In advanced economies 1 , nuclear power accounts for 18% of generation and is the largest low-carbon source of electricity. However, its share of global electricity supply has been declining in recent years. That has been driven by advanced economies, where nuclear fleets are ageing, additions of new capacity have dwindled to a trickle, and some plants built in the 1970s and 1980s have been retired. This has slowed the transition towards a clean electricity system. Despite the impressive growth of solar and wind power, the overall share of clean energy sources in total electricity supply in 2018, at 36%, was the same as it was 20 years earlier because of the decline in nuclear. Halting that slide will be vital to stepping up the pace of the decarbonisation of electricity supply.

A range of technologies, including nuclear power, will be needed for clean energy transitions around the world.  Global energy is increasingly based around electricity. That means the key to making energy systems clean is to turn the electricity sector from the largest producer of CO 2 emissions into a low-carbon source that reduces fossil fuel emissions in areas like transport, heating and industry. While renewables are expected to continue to lead, nuclear power can also play an important part along with fossil fuels using carbon capture, utilisation and storage. Countries envisaging a future role for nuclear account for the bulk of global energy demand and CO 2 emissions. But to achieve a trajectory consistent with sustainability targets – including international climate goals – the expansion of clean electricity would need to be three times faster than at present. It would require 85% of global electricity to come from clean sources by 2040, compared with just 36% today. Along with massive investments in efficiency and renewables, the trajectory would need an 80% increase in global nuclear power production by 2040.

Nuclear power plants contribute to electricity security in multiple ways.  Nuclear plants help to keep power grids stable. To a certain extent, they can adjust their operations to follow demand and supply shifts. As the share of variable renewables like wind and solar photovoltaics (PV) rises, the need for such services will increase. Nuclear plants can help to limit the impacts from seasonal fluctuations in output from renewables and bolster energy security by reducing dependence on imported fuels.

Lifetime extensions of nuclear power plants are crucial to getting the energy transition back on track

Policy and regulatory decisions remain critical to the fate of ageing reactors in advanced economies.  The average age of their nuclear fleets is 35 years. The European Union and the United States have the largest active nuclear fleets (over 100 gigawatts each), and they are also among the oldest: the average reactor is 35 years old in the European Union and 39 years old in the United States. The original design lifetime for operations was 40 years in most cases. Around one quarter of the current nuclear capacity in advanced economies is set to be shut down by 2025 – mainly because of policies to reduce nuclear’s role. The fate of the remaining capacity depends on decisions about lifetime extensions in the coming years. In the United States, for example, some 90 reactors have 60-year operating licenses, yet several have already been retired early and many more are at risk. In Europe, Japan and other advanced economies, extensions of plants’ lifetimes also face uncertain prospects.

Economic factors are also at play.  Lifetime extensions are considerably cheaper than new construction and are generally cost-competitive with other electricity generation technologies, including new wind and solar projects. However, they still need significant investment to replace and refurbish key components that enable plants to continue operating safely. Low wholesale electricity and carbon prices, together with new regulations on the use of water for cooling reactors, are making some plants in the United States financially unviable. In addition, markets and regulatory systems often penalise nuclear power by not pricing in its value as a clean energy source and its contribution to electricity security. As a result, most nuclear power plants in advanced economies are at risk of closing prematurely.

The hurdles to investment in new nuclear projects in advanced economies are daunting

What happens with plans to build new nuclear plants will significantly affect the chances of achieving clean energy transitions.  Preventing premature decommissioning and enabling longer extensions would reduce the need to ramp up renewables. But without new construction, nuclear power can only provide temporary support for the shift to cleaner energy systems. The biggest barrier to new nuclear construction is mobilising investment.  Plans to build new nuclear plants face concerns about competitiveness with other power generation technologies and the very large size of nuclear projects that require billions of dollars in upfront investment. Those doubts are especially strong in countries that have introduced competitive wholesale markets.

A number of challenges specific to the nature of nuclear power technology may prevent investment from going ahead.  The main obstacles relate to the sheer scale of investment and long lead times; the risk of construction problems, delays and cost overruns; and the possibility of future changes in policy or the electricity system itself. There have been long delays in completing advanced reactors that are still being built in Finland, France and the United States. They have turned out to cost far more than originally expected and dampened investor interest in new projects. For example, Korea has a much better record of completing construction of new projects on time and on budget, although the country plans to reduce its reliance on nuclear power.

Without nuclear investment, achieving a sustainable energy system will be much harder

A collapse in investment in existing and new nuclear plants in advanced economies would have implications for emissions, costs and energy security.  In the case where no further investments are made in advanced economies to extend the operating lifetime of existing nuclear power plants or to develop new projects, nuclear power capacity in those countries would decline by around two-thirds by 2040. Under the current policy ambitions of governments, while renewable investment would continue to grow, gas and, to a lesser extent, coal would play significant roles in replacing nuclear. This would further increase the importance of gas for countries’ electricity security. Cumulative CO 2 emissions would rise by 4 billion tonnes by 2040, adding to the already considerable difficulties of reaching emissions targets. Investment needs would increase by almost USD 340 billion as new power generation capacity and supporting grid infrastructure is built to offset retiring nuclear plants.

Achieving the clean energy transition with less nuclear power is possible but would require an extraordinary effort.  Policy makers and regulators would have to find ways to create the conditions to spur the necessary investment in other clean energy technologies. Advanced economies would face a sizeable shortfall of low-carbon electricity. Wind and solar PV would be the main sources called upon to replace nuclear, and their pace of growth would need to accelerate at an unprecedented rate. Over the past 20 years, wind and solar PV capacity has increased by about 580 GW in advanced economies. But in the next 20 years, nearly five times that much would need to be built to offset nuclear’s decline. For wind and solar PV to achieve that growth, various non-market barriers would need to be overcome such as public and social acceptance of the projects themselves and the associated expansion in network infrastructure. Nuclear power, meanwhile, can contribute to easing the technical difficulties of integrating renewables and lowering the cost of transforming the electricity system.

With nuclear power fading away, electricity systems become less flexible.  Options to offset this include new gas-fired power plants, increased storage (such as pumped storage, batteries or chemical technologies like hydrogen) and demand-side actions (in which consumers are encouraged to shift or lower their consumption in real time in response to price signals). Increasing interconnection with neighbouring systems would also provide additional flexibility, but its effectiveness diminishes when all systems in a region have very high shares of wind and solar PV.

Offsetting less nuclear power with more renewables would cost more

Taking nuclear out of the equation results in higher electricity prices for consumers.  A sharp decline in nuclear in advanced economies would mean a substantial increase in investment needs for other forms of power generation and the electricity network. Around USD 1.6 trillion in additional investment would be required in the electricity sector in advanced economies from 2018 to 2040. Despite recent declines in wind and solar costs, adding new renewable capacity requires considerably more capital investment than extending the lifetimes of existing nuclear reactors. The need to extend the transmission grid to connect new plants and upgrade existing lines to handle the extra power output also increases costs. The additional investment required in advanced economies would not be offset by savings in operational costs, as fuel costs for nuclear power are low, and operation and maintenance make up a minor portion of total electricity supply costs. Without widespread lifetime extensions or new projects, electricity supply costs would be close to USD 80 billion higher per year on average for advanced economies as a whole.

Strong policy support is needed to secure investment in existing and new nuclear plants

Countries that have kept the option of using nuclear power need to reform their policies to ensure competition on a level playing field.  They also need to address barriers to investment in lifetime extensions and new capacity. The focus should be on designing electricity markets in a way that values the clean energy and energy security attributes of low-carbon technologies, including nuclear power.

Securing investment in new nuclear plants would require more intrusive policy intervention given the very high cost of projects and unfavourable recent experiences in some countries.  Investment policies need to overcome financing barriers through a combination of long-term contracts, price guarantees and direct state investment.

Interest is rising in advanced nuclear technologies that suit private investment such as small modular reactors (SMRs).  This technology is still at the development stage. There is a case for governments to promote it through funding for research and development, public-private partnerships for venture capital and early deployment grants. Standardisation of reactor designs would be crucial to benefit from economies of scale in the manufacturing of SMRs.

Continued activity in the operation and development of nuclear technology is required to maintain skills and expertise.  The relatively slow pace of nuclear deployment in advanced economies in recent years means there is a risk of losing human capital and technical know-how. Maintaining human skills and industrial expertise should be a priority for countries that aim to continue relying on nuclear power.

The following recommendations are directed at countries that intend to retain the option of nuclear power. The IEA makes no recommendations to countries that have chosen not to use nuclear power in their clean energy transition and respects their choice to do so.

  • Keep the option open:  Authorise lifetime extensions of existing nuclear plants for as long as safely possible.
  • Value non-market benefits:  Establish a level playing field for nuclear power with other low carbon energy sources in recognition of its environmental and energy security benefits and remunerate it accordingly.
  • Create an attractive financing framework:  Set up risk management and financing frameworks that can help mobilise capital for new and existing plants at an acceptable cost, taking the risk profile and long time horizons of nuclear projects into consideration.
  • Support new construction:  Ensure that licensing processes do not lead to project delays and cost increases that are not justified by safety requirements. Support standardisation and enable learning-by-doing across the industry.
  • Support innovative new reactor designs:  Accelerate innovation in new reactor designs, such as small modular reactors (SMRs), with lower capital costs and shorter lead times and technologies that improve the operating flexibility of nuclear power plants to facilitate the integration of growing wind and solar capacity into the electricity system.

Advanced economies consist of Australia, Canada, Chile, the 28 members of the European Union, Iceland, Israel, Japan, Korea, Mexico, New Zealand, Norway, Switzerland, Turkey and the United States.

Reference 1

Cite report.

IEA (2019), Nuclear Power in a Clean Energy System , IEA, Paris https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system, Licence: CC BY 4.0

Share this report

  • Share on Twitter Twitter
  • Share on Facebook Facebook
  • Share on LinkedIn LinkedIn
  • Share on Email Email
  • Share on Print Print

Subscription successful

Thank you for subscribing. You can unsubscribe at any time by clicking the link at the bottom of any IEA newsletter.

Brookings Essay

Back to the Future Josh Freed

Leslie and mark's old/new idea.

The Nuclear Science and Engineering Library at MIT is not a place where most people would go to unwind. It’s filled with journals that have articles with titles like “Longitudinal double-spin asymmetry of electrons from heavy flavor decays in polarized p + p collisions at √s = 200 GeV.” But nuclear engineering Ph.D. candidates relax in ways all their own. In the winter of 2009, two of those candidates, Leslie Dewan and Mark Massie, were studying for their qualifying exams—a brutal rite of passage—and had a serious need to decompress.

To clear their heads after long days and nights of reviewing neutron transport, the mathematics behind thermohydraulics, and other such subjects, they browsed through the crinkled pages of journals from the first days of their industry—the glory days. Reading articles by scientists working in the 1950s and ‘60s, they found themselves marveling at the sense of infinite possibility those pioneers had brought to their work, in awe of the huge outpouring of creative energy. They were also curious about the dozens of different reactor technologies that had once been explored, only to be abandoned when the funding dried up.

The early nuclear researchers were all housed in government laboratories—at Oak Ridge in Tennessee, at the Idaho National Lab in the high desert of eastern Idaho, at Argonne in Chicago, and Los Alamos in New Mexico. Across the country, the nation’s top physicists, metallurgists, mathematicians, and engineers worked together in an atmosphere of feverish excitement, as government support gave them the freedom to explore the furthest boundaries of their burgeoning new field. Locked in what they thought of as a life-or-death race with the Soviet Union, they aimed to be first in every aspect of scientific inquiry, especially those that involved atom splitting.

essay on nuclear power

1955: Argonne's BORAX III reactor provided all the electricity for Arco, Idaho, the first time any community's electricity was provided entirely by nuclear energy. Source: Wikimedia Commons

Though nuclear engineers were mostly men in those days, Leslie imagined herself working alongside them, wearing a white lab coat, thinking big thoughts. “It was all so fresh, so exciting, so limitless back then,” she told me. “They were designing all sorts of things: nuclear-powered cars and airplanes, reactors cooled by lead. Today, it’s much less interesting. Most of us are just working on ways to tweak basically the same light water reactor we’ve been building for 50 years.”

essay on nuclear power

1958: The Ford Nucleon scale-model concept car developed by Ford Motor Company as a design of how a nuclear-powered car might look. Source: Wikimedia Commons

But because of something that she and Mark stumbled across in the library during one of their forays into the old journals, Leslie herself is not doing that kind of tweaking—she’s trying to do something much more radical. One night, Mark showed Leslie a 50-year-old paper from Oak Ridge about a reactor powered not by rods of metal-clad uranium pellets in water, like the light water reactors of today, but by a liquid fuel of uranium mixed into molten salt to keep it at a constant temperature. The two were intrigued, because it was clear from the paper that the molten salt design could potentially be constructed at a lower cost and shut down more easily in an emergency than today’s light water reactors. And the molten salt design wasn’t just theoretical—Oak Ridge had built a real reactor, which ran from 1965-1969, racking up 20,000 operating hours.

The 1960s-era salt reactor was interesting, but at first blush it didn’t seem practical enough to revive. It was bulky, expensive, and not very efficient. Worse, it ran on uranium enriched to levels far above the modern legal limit for commercial nuclear power. Most modern light water reactors run on 5 percent enriched uranium, and it is illegal under international and domestic law for commercial power generators to use anything above 20 percent, because at levels that high uranium can be used for making weapons. The Oak Ridge molten salt reactor needed uranium enriched to at least 33 percent, possibly even higher.

Oak Ridge reactor

Aircraft Reactor Experiment building at ORNL (Extensive research into molten salt reactors started with the U.S. aircraft reactor experiment (ARE) in support of the U.S. Aircraft Nuclear Propulsion program.) Wikimedia Commons

Oak Ridge reactor

1964: Molten salt reactor at Oak Ridge. Source: Wikimedia Commons

But they were aware that smart young engineers were considering applying modern technology to several other decades-old reactor designs from the dawn of the nuclear age, and this one seemed to Leslie and Mark to warrant a second look. After finishing their exams, they started searching for new materials that could be used in a molten salt reactor to make it both legal and more efficient. If they could show that a modified version of the old design could compete with—or exceed—the performance of today’s light water reactors, they knew they might have a very interesting project on their hands.

First, they took a look at the fuel. By using different, more modern materials, they had a theory that they could get the reactor to work at very low enrichment levels. Maybe, they hoped, even significantly below 5 percent.

There was a good reason to hope. Today’s reactors produce a significant amount of nuclear “waste,” many tons of which are currently sitting in cooling pools and storage canisters at plant sites all over the country. The reason that the waste has to be managed so carefully is that when they are discarded, the uranium fuel rods contain about 95 percent of the original amount of energy and remain both highly radioactive and hot enough to boil water. It dawned on Leslie and Mark that if they could chop up the rods and remove their metal cladding, they might have a “killer app”—a sector-redefining technology like Uber or Airbnb—for their molten salt reactor design, enabling it to run on the waste itself.

By late 2010, the computer modeling they were doing suggested this might indeed work. When Leslie left for a trip to Egypt with her family in January 2011, Mark kept running simulations back at MIT. On January 11, he sent his partner an email that she read as she toured the sites of Alexandria. The note was highly technical, but said in essence that Mark’s latest work confirmed their hunch—they could indeed make their reactor run on nuclear waste. Leslie looked up from her phone and said to her brother: “I need to go back to Boston.”

Watch Leslie Dewan and Mark Massie on the future of nuclear energy

Climate Change Spurs New Call for Nuclear Energy

In the days when Leslie and Mark were studying for their exams, it may have seemed that the Golden Age of nuclear energy in the United States had long since passed. Not a single new commercial reactor project had been built here in over 30 years. Not only were there no new reactors, but with the fracking boom having produced abundant supplies of cheap natural gas, some electric utilities were shutting down their aging reactors rather than doing the costly upgrades needed to keep them online.

As the domestic reactor market went into decline, the American supply chain for nuclear reactor parts withered. Although almost all commercial nuclear technology had been discovered in the United States, our competitors eventually purchased much of our nuclear industrial base, with Toshiba buying Westinghouse, for example.* Not surprisingly, as the nuclear pioneers aged and young scientists stayed away from what seemed to be a dying industry, the number of nuclear engineers also dwindled over the decades. In addition, the American regulatory system, long considered the gold standard for western nuclear systems, began to lose influence as other countries pressed ahead with new reactor construction while the U.S. market remained dormant.

Yet something has changed in recent years. Leslie and Mark are not really outliers. All of a sudden, a flood of young engineers has entered the field. More than 1,164 nuclear engineering degrees were awarded in 2013—a 160 percent increase over the number granted a decade ago.

fuel sources

So what, after a 30-year drought, is drawing smart young people back to the nuclear industry? The answer is climate change. Nuclear energy currently provides about 20 percent of the electric power in the United States, and it does so without emitting any greenhouse gases. Compare that to the amount of electricity produced by the other main non-emitting sources of power, the so-called “renewables”—hydroelectric (6.8 percent), wind (4.2 percent) and solar (about one quarter of a percent). Not only are nuclear plants the most important of the non-emitting sources, but they provide baseload—“always there”—power, while most renewables can produce electricity only intermittently, when the wind is blowing or the sun is shining.

In 2014, the Intergovernmental Panel on Climate Change, a United Nations-based organization that is the leading international body for the assessment of climate risk, issued a desperate call for more non-emitting power sources. According to the IPCC, in order to mitigate climate change and meet growing energy demands, the world must aggressively expand its sources of renewable energy, and it must also build more than 400 new nuclear reactors in the next 20 years—a near-doubling of today’s global fleet of 435 reactors. However, in the wake of the tsunami that struck Japan’s Fukushima Daichi plant in 2011, some countries are newly fearful about the safety of light water reactors. Germany, for example, vowed to shutter its entire nuclear fleet.

essay on nuclear power

November 6, 2013: The spent fuel pool inside the No.4 reactor building at the tsunami-crippled Tokyo Electric Power Co.'s (TEPCO) Fukushima Daiichi nuclear power plant. Source: REUTERS/Kyodo (Japan)

The young scientists entering the nuclear energy field know all of this. They understand that a major build-out of nuclear reactors could play a vital role in saving the world from climate disaster. But they also recognize that for that to happen, there must be significant changes in the technology of the reactors, because fear of light water reactors means that the world is not going to be willing to fund and build enough of them to supply the necessary energy. That’s what had sent Leslie and Mark into the library stacks at MIT—a search for new ideas that might be buried in the old designs.

They have now launched a company, Transatomic, to build the molten salt reactor they see as a viable answer to the problem. And they’re not alone—at least eight other startups have emerged in recent years, each with its own advanced reactor design. This new generation of pioneers is working with the same sense of mission and urgency that animated the discipline’s founders. The existential threat that drove the men of Oak Ridge and Argonne was posed by the Soviets; the threat of today is from climate change.

Heeding that sense of urgency, investors from Silicon Valley and elsewhere are stepping up to provide funding. One startup, TerraPower, has the backing of Microsoft co-founder Bill Gates and former Microsoft executive Nathan Myhrvold. Another, General Fusion, has raised $32 million from investors, including nearly $20 million from Amazon founder Jeff Bezos. And LPP Fusion has even benefited, to the tune of $180,000, from an Indiegogo crowd-funding campaign.

essay on nuclear power

All of the new blood, new ideas, and new money are having a real effect. In the last several years, a field that had been moribund has become dynamic again, once more charged with a feeling of boundless possibility and optimism.

But one huge source of funding and support enjoyed by those first pioneers has all but disappeared: The U.S. government.

essay on nuclear power

The "Atoms for Peace" program supplied equipment and information to schools, hospitals, and research institutions within the U.S. and throughout the world. Source: Wikipedia

From Atoms for Peace to Chernobyl

essay on nuclear power

December 8, 1953: U.S. President Eisenhower delivers his "Atoms for Peace" speech to the United Nations General Assembly in New York. Source: IAEA

In the early days of nuclear energy development, the government led the charge, funding the research, development, and design of 52 different reactors at the Idaho laboratory’s National Reactor Testing Station alone, not to mention those that were being developed at other labs, like the one that was the subject of the paper Leslie and Mark read. With the help of the government, engineers were able to branch out in many different directions.

Soon enough, the designs were moving from paper to test reactors to deployment at breathtaking speed. The tiny Experimental Breeder Reactor 1, which went online in December 1951 at the Idaho National Lab, ushered in the age of nuclear energy.

Just two years later, President Dwight D. Eisenhower made his Atoms for Peace speech to the U.N., in which he declared that “The United States knows that peaceful power from atomic energy is no dream of the future. The capability, already proved, is here today.” Less than a year after that, Eisenhower waved a ceremonial "neutron wand" to signal a bulldozer in Shippingport, Pennsylvania to begin construction of the nation’s first commercial nuclear power plant.

essay on nuclear power

1956: Reactor pressure vessel during construction at the Shippingport Atomic Power Station. Source: Wikipedia

By 1957 the Atoms for Peace program had borne fruit, and Shippingport was open for business. During the years that followed, the government, fulfilling Eisenhower’s dream, not only funded the research, it ran the labs, chose the technologies, and, eventually, regulated the reactors.

The U.S. would soon rapidly surpass not only its Cold War enemy, the Soviet Union, which had brought the first significant electricity-producing reactor online in 1954, but every other country seeking to deploy nuclear energy, including France and Canada. Much of the extraordinary progress in America’s development of nuclear energy technology can be credited to one specific government institution—the U.S. Navy.

Wang Yang

Rickover’s choice has had enormous implications. To this day, the light water reactor remains the standard—the only type of reactor built or used for energy production in the United States and in most other countries as well. Research on other reactor types (like molten salt and lead) essentially ended for almost six decades, not to be revived until very recently.

Once light water reactors got the nod, the Atomic Energy Commission endorsed a cookie-cutter-like approach to building additional reactors that was very enticing to energy companies seeking to enter the atomic arena. Having a standardized light water reactor design meant quicker regulatory approval, economies of scale, and operating uniformity, which helped control costs and minimize uncertainty. And there was another upside to the light water reactors, at least back then: they produced a byproduct—plutonium. These days, we call that a problem: the remaining fissile material that must be protected from accidental discharge or proliferation and stored indefinitely. In the Cold War 1960s, however, that was seen as a benefit, because the leftover plutonium could be used to make nuclear weapons.

Titan II missile

2005: An ICBM loaded into a silo of the former ICBM missile site, now the Titan Missile Museum. Source: Wikipedia

With the triumph of the light water reactor came a massive expansion of the domestic and global nuclear energy industries. In the 1960s and ‘70s, America’s technology, design, supply chain, and regulatory system dominated the production of all civilian nuclear energy on this side of the Iron Curtain. U.S. engineers drew the plans, U.S. companies like Westinghouse and GE built the plants, U.S. factories and mills made the parts, and the U.S. government’s Atomic Energy Commission set the global safety standards.

In this country, we built more than 100 light water reactors for commercial power production. Though no two American plants were identical, all of the plants constructed in that era were essentially the same—light water reactors running on uranium enriched to about 4 percent. By the end of the 1970s, in addition to the 100-odd reactors that had been built, 100 more were in the planning or early construction stage.

And then everything came to a screeching halt, thanks to a bizarre confluence of Hollywood and real life.

On March 16, 1979, The China Syndrome —starring Jane Fonda, Jack Lemmon, and Michael Douglas—hit theaters, frightening moviegoers with an implausible but well-told tale of a reactor meltdown and catastrophe, which had the potential, according to a character in the film, to render an area “the size of Pennsylvania permanently uninhabitable.” Twelve days later, the Number 2 reactor at the Three Mile Island plant in central Pennsylvania suffered an accident that caused the release of some nuclear coolant and a partial meltdown of the reactor core. After the governor ordered the evacuation of “pregnant women and preschool age children,” widespread panic followed, and tens of thousands of people fled in terror.

essay on nuclear power

1979: Three Mile Island power station. Source: Wikipedia

But both the evacuation order and the fear were unwarranted. A massive investigation revealed that the release of radioactive materials was minimal and had posed no risk to human health. No one was injured or killed at Three Mile Island. What did die that day was America’s nuclear energy leadership. After Three Mile Island, plans for new plants then on the drawing board were scrapped or went under in a blizzard of public recrimination, legal action, and regulatory overreach by federal, state, and local officials. For example, the Shoreham plant on Long Island, which took nearly a decade to build and was completed in 1984, never opened, becoming one of the biggest and most expensive white elephants in human history.

Chernobyl

The concrete "sarcophagus" built over the Chernobyl nuclear power plant's fourth reactor that exploded on April 26, 1986. Source: REUTERS

Chernobyl

Chernobyl sarcophogi Magnum

The final, definitive blow to American nuclear energy was delivered in 1986, when the Soviets bungled their way into a genuine nuclear energy catastrophe: the disaster at the Chernobyl plant in Ukraine. It was man-made in its origin (risky decisions made at the plant led to the meltdown, and the plant itself was badly designed); widespread in its scope (Soviet reactors had no containment vessel, so the roof was literally blown off, the core was exposed, and a radioactive cloud covered almost the whole of Europe); and lethal in its impact (rescuers and area residents were lied to by the Soviet government, which denied the risk posed by the disaster, causing many needless deaths and illnesses and the hospitalization of thousands).

After Chernobyl, it didn’t matter that American plants were infinitely safer and better run. This country, which was awash in cheap and plentiful coal, simply wasn’t going to build more nuclear plants if it didn’t have to.

But now we have to.

The terrible consequences of climate change mean that we must find low- and zero-emitting ways of producing electricity.

Nuclear Commercial Power Reactors, 1958-2014

November 2014: Leslie Dewan and Mark Massie at MIT. Source: Sareen Hairabedian, Brookings Institution

The Return of Nuclear Pioneers

Five new light water reactors are currently under construction in the U.S., but the safety concerns about them (largely unwarranted as they are) as well as their massive size, cost, complexity, and production of used fuel (“waste”) mean that there will probably be no large-scale return to the old style of reactor. What we need now is to go back to the future and build some of those plants that they dreamed up in the labs of yesterday.

Which is what Leslie and Mark are trying to do with Transatomic. Once they had their breakthrough moment and realized that they could fuel their reactor on nuclear waste material, they began to think seriously about founding a company. So they started doing what all entrepreneurial MIT grads do—they talked to venture capitalists. Once they got their initial funding, the two engineers knew that they needed someone with business experience, so they hired a CEO, Russ Wilcox, who had built and sold a very successful e-publishing company. At the time they approached him, Wilcox was in high demand, but after hearing Leslie and Mark give a TEDx talk about the environmental promise of advanced nuclear technology, he opted to go with Transatomic— because he thought it could help save the world.

essay on nuclear power

November 1, 2014: Mark Massie and Leslie Dewan giving a TEDx talk . Source: Transatomic

In their talk, the two founders had explained that in today’s light water reactors, metal-clad uranium fuel rods are lowered into water in order to heat it and create steam to run the electric turbines. But the water eventually breaks down the metal cladding and then the rods must be replaced. The old rods become nuclear waste, which will remain radioactive for up to 100,000 years, and, under the current American system, must remain in storage for that period.

The genius of the Transatomic design is that, according to Mark’s simulations, their reactor could make use of almost all of the energy remaining in the rods that have been removed from the old light water reactors, while producing almost no waste of their own—just 2.5 percent as much as produced by a typical light water reactor. If they built enough molten salt reactors, Transatomic could theoretically consume not just the roughly 70,000 metric tons of nuclear waste currently stored at U.S. nuclear plants, but also the additional 2,000 metric tons that are produced each year.

Like all molten salt reactors, the Transatomic design is extraordinarily safe as well. That is more important than ever after the terror inspired by the disaster that occurred at the Fukushima light water reactor plant in 2011.When the tsunami knocked out the power for the pumps that provided the water required for coolant, the Fukushima plant suffered a partial core meltdown. In a molten salt reactor, by contrast, no externally supplied coolant would be needed, making it what Transatomic calls “walk away safe.” That means that, in the event of a power failure, no human intervention would be required; the reactor would essentially cool itself without water or pumps. With a loss of external electricity, the artificially chilled plug at the base of the reactor would melt, and the material in the core (salt and uranium fuel) would drain to a containment tank and cool within hours.

Leslie and Mark have also found materials that would boost the power output of a molten salt reactor by 30 times over the 1960s model. Their redesign means the reactor might be small and efficient enough to be built in a factory and moved by rail. (Current reactors are so large that they must be assembled on site.)

Click image to play or stop animation

Nuclear Reactor Comparison

Transatomic, as well as General Fusion and LPP Fusion, represent one branch of the new breed of nuclear pioneers—call them “the young guns.” Also included in this group are companies like Terrestrial Energy in Canada, which is developing an alternative version of the molten salt reactor; Flibe Energy, which is preparing for experiments on a liquid-thorium fluoride reactor; UPower, at work on a nuclear battery; and engineers who are incubating projects not just at MIT but at a number of other universities and labs. Thanks to their work, the next generator of reactors might just be developed by small teams of brilliant entrepreneurs.

Then there are the more established companies and individuals—call them the “old pros”—who have become players in the advanced nuclear game. These include the engineering giant Fluor, which recently bought a startup out of Oregon called NuScale Power. They are designing a new type of light water “Small Modular Reactor” that is integral (the steam generator is built in), small (it generates about 4 percent of the output of a large reactor and fits on the back of a truck), and sectional (it can be strung together with others to generate more power). In part because of its relatively familiar light water design, Fluor and a small modular reactor competitor, Babcock & Wilcox, are the only pioneers of the new generation of technology to have received government grants—for $226 million each—to fund their research.

Another of the “old pros,” the well-established General Atomics, in business since 1955, is combining the benefits of small modular reactors with a design that can convert nuclear waste into electricity and also produce large amounts of heat and energy for industrial applications. The reactor uses helium rather than water or molten salt as its coolant. Its advanced design, which they call the Energy Multiplier Module reactor, has the potential to revolutionize the industry.

Somewhere in between is TerraPower. While it’s run by young guns, it’s backed by the world’s second richest man (among others). But even Bill Gates’s money won’t be enough. Nuclear technology is too big, too expensive, and too complex to explore in a garage, real or metaphorical. TerraPower has said that a prototype reactor could cost up to $5 billion, and they are going to need some big machines to develop and test it.

So while Leslie, Mark, and others in their cohort may seem like the latest iteration of Silicon Valley hipster entrepreneurs, the work they’re trying to do cannot be accomplished by Silicon Valley VC-scale funding. There has to be substantial government involvement.

Unfortunately, the relatively puny grants to Fluor and Babcock & Wilcox are the federal government’s largest contribution to advanced nuclear development to date. At the moment, the rest are on their own.

The result is that some of the fledgling enterprises, like General Atomic and Gates’s TerraPower, have decamped for China. Others, like Leslie and Mark’s, are staying put in the United States (for now) and hoping for federal support.

chinese nuclear power plant construction

UBritish Chancellor of the Exchequer George Osborne (2nd R) chats with workers beside Taishan Nuclear Power Joint Venture Co Ltd General Manager Guo Liming (3rd R) and EDF Energy CEO Vincent de Rivaz (R), in front of a nuclear reactor under construction at a nuclear power plant in Taishan, Guangdong province, October 17, 2013. Chinese companies will be allowed to take stakes in British nuclear projects, Osborne said on Thursday, as Britain pushes ahead with an ambitious target to expand nuclear energy. REUTERS/Bobby Yip (CHINA - Tags: POLITICS BUSINESS ENVIRONMENT SCIENCE TECHNOLOGY ENERGY) Source: REUTERS

June 2008: A nearly 200 ton nuclear reactor safety vessel is erected at the Indira Gandhi Centre for Atomic Research at Kalpakkam, near the southern Indian city of Chennai. Source: REUTERS/Babu (INDIA)

Missing in Action: The United States Government

There are American political leaders in both parties who talk about having an “all of the above” energy policy, implying that they want to build everything, all at once. But they don’t mean it, at least not really. In this country, we don’t need all of the above—virtually every American has access to electric power. We don’t want it—we have largely stopped building coal as well as nuclear plants, even though we could. And we don’t underwrite it—the public is generally opposed to the government being in the business of energy research, development, and demonstration (aka, RD&D).

In China, when they talk of “all of the above,” they do mean it. With hundreds of millions of Chinese living without electricity and a billion more demanding ever-increasing amounts of power, China is funding, building, and running every power project that they possibly can. This includes the nuclear sector, where they have about 29 big new light water reactors under construction. China is particularly keen on finding non-emitting forms of electricity, both to address climate change and, more urgently for them, to help slow the emissions of the conventional pollutants that are choking their cities in smog and literally killing their citizens.

planned reacotrs chart

Since (for better or for worse) China isn’t hung up on safety regulation, and there is zero threat of legal challenge to nuclear projects, plans can be realized much more quickly than in the West. That means that there are not only dozens of light water reactor plants going up in China, but also a lot of work on experimental reactors with advanced nuclear designs—like those being developed by General Atomic and TerraPower.

Given both the competitive threat from China and the potentially disastrous global effects of emissions-induced climate change, the U.S. government should be leaping back into the nuclear race with the kind of integrated response that it brought to the Soviet threat during the Cold War.

But it isn’t, at least not yet. Through years of stagnation, America lost—or perhaps misplaced—its ability to do big, bold things in nuclear science. Our national labs, which once led the world to this technology, are underfunded, and our regulatory system, which once set the standard of global excellence, has become overly burdensome, slow, and sclerotic.

essay on nuclear power

The villains in this story are familiar in Washington: ideology, ignorance, and bureaucracy. Let’s start with Congress, currently sporting a well-earned 14 percent approval rating. On Capitol Hill, an unholy and unwitting alliance of right-wing climate deniers, small-government radicals, and liberal anti-nuclear advocates have joined together to keep nuclear lab budgets small. And since even naming a post office constitutes a huge challenge for this broken Congress, moving forward with the funding and regulation of a complex new technology seems well beyond its capabilities at the moment.

Then there is the federal bureaucracy, which has failed even to acknowledge that a new generation of reactors is on the horizon. It took the Nuclear Regulatory Commission (the successor to the Atomic Energy Commission) years to approve a design for the new light water reactor now being built in Georgia, despite the fact that it’s nearly identical to the 100 or so that preceded it. The NRC makes no pretense of being prepared to evaluate reactors cooled by molten salt or run on depleted uranium. And it insists on pounding these new round pegs into its old square holes, demanding that the new reactors meet the same requirements as the old ones, even when that makes no sense.

At the Department of Energy, their heart is in the right place. DOE Secretary Ernest Moniz is a seasoned political hand as well as an MIT nuclear physicist, and he absolutely sees the potential in advanced reactor designs. But, constrained by a limited budget, the department is not currently in a position to drive the kind of changes needed to bring advanced nuclear designs to market.

President Obama clearly believes in nuclear energy. In an early State of the Union address he said, “We need more production, more efficiency, more incentives. And that means building a new generation of safe, clean nuclear power plants in this country." But the White House has been largely absent from the nuclear energy discussion in recent years. It is time for it to reengage.

essay on nuclear power

May 22, 1957: A GE supervisor inspects the instrument panel for the company’s boiling water power reactor in Pleasanton, CA. Source: Bettmann/Corbis/AP Images

Getting the U.S. Back in the Race

So what, exactly, do the people running the advanced nuclear companies need from the U.S. government? What can government do to help move the technology off of their computers and into the electricity production marketplace?

First, they need a practical development path. Where is Bill Gates going to test TerraPower’s brilliant new reactor designs? Because there are no appropriate government-run facilities in the United States, he is forced to make do in China. He can’t find this ideal. Since more than two-thirds of Microsoft Windows operating systems used in China are pirated, he is surely aware that testing in China greatly increases the risk of intellectual property theft.

Thus, at the center of a development path would be an advanced reactor test bed facility, run by the government, and similar to what we had at the Idaho National Lab in 1960s. Such a facility, which would be open to all of the U.S. companies with reactors in development, would allow any of them to simply plug in their fuel and materials and run their tests

But advanced test reactors of the type we need are expensive and complex. The old one at the Idaho lab can’t accommodate the radiation and heat levels required by the new technologies. Japan has a newer one, but it shut down after Fukushima. China and Russia each have them, and France is building one that should be completed in 2016. But no one has the cutting-edge, truly advanced incubator space that the new firms need to move toward development.

Second is funding. Mark and Leslie have secured some venture capital, but Transatomic will need much more money in order to perform the basic engineering on an advanced test reactor and, eventually, to construct demonstration reactors. Like all startups, Transatomic faces a “Valley of Death” between concept and deployment; with nuclear technology’s enormous costs and financial risk, it’s more like a “Grand Canyon of Death.” Government must play a big role in bridging that canyon, as it did in the early days of commercial nuclear energy development, beginning with the first light water reactor at Shippingport.

For Further Reading

President Obama, It's Time to Act on Energy Policy November 2014, Charles Ebinger

Transforming the Electricity Portfolio: Lessons from Germany and Japan in Deploying Renewable Energy September 2014, John Banks, Charles Ebinger, and Alisa Schackmann

The Road Ahead for Japanese Energy June 2014

Planet Policy A blog about the intersection of energy and climate policy

Third, they need a complete rethinking of the NRC approach to regulating advanced nuclear technology. How can the brand new Flibe Energy liquid-thorium fluoride reactor technology be forced to meet the same criteria as the typical light water reactor? The NRC must be flexible enough to accommodate technology that works differently from the light water reactors it is familiar with. For example, since Transatomic’s reactor would run at normal atmospheric pressure, unlike a light water reactor, which operates under vastly greater pressure, Mark and Leslie shouldn’t be required to build a huge and massively expensive containment structure around their reactors. Yet the NRC has no provision allowing them to bypass that requirement. If that doesn’t change, there is no way that Transatomic will be able to bring its small, modular, innovative reactors to market.

In addition, the NRC must let these technologies develop organically. They should permit Transatomic and the others to build and operate prototype reactors before they are fully licensed, allowing them to demonstrate their safety and reliability with real-world stress tests, as opposed to putting them through never-ending rounds of theoretical discussion and negotiation with NRC testers.

None of this is easy. The seriousness of the climate change threat is not universally acknowledged in Washington. Federal budgets are now based in the pinched, deficit-constrained present, not the full employment, high-growth economy of the 1950s. And the NRC, in part because of its mission to protect public safety, is among the most change-averse of any federal agency.

But all of this is vital. Advanced nuclear technology could hold a key to fighting climate change. It could also result in an enormous boon to the American economy. But only if we get there first.

Who Will Own the Nuclear Power Future?

Josh Freed portrait

Josh Freed, Third Way's clean energy vice president, works on developing ways the federal government can help accelerate the private sector's adoption of clean energy and address climate change. He has served as a senior staffer on Capitol Hill and worked in various public advocacy and political campaigns, including advising the senior leadership of the Bill & Melinda Gates Foundation.

Nuclear energy is at a crossroads. One path sends brilliant engineers like Leslie and Mark forward, applying their boundless skills and infectious optimism to world-changing technologies that have the potential to solve our energy problems while also fueling economic development and creating new jobs. The other path keeps the nuclear industry locked in unadaptable technologies that will lead, inevitably, to a decline in our major source of carbon-free energy.

The chance to regain our leadership in nuclear energy, to walk on the path once trod by the engineers and scientists of the 1950s and ‘60s, will not last forever. It is up to those who make decisions on matters concerning funding and regulation to strike while the iron is hot.

This is not pie-in-the-sky thinking—we have done this before. At the dawn of the nuclear age, we designed and built reactors that tested the range of possibility. The blueprints then languished on the shelves of places like the MIT library for more than fifty years until Leslie Dewan, Mark Massie, and other brilliant engineers and scientists thought to revive them. With sufficient funding and the appropriate technical and political leadership, we can offer the innovators and entrepreneurs of today the chance to use those designs to power the future.

Join the conversation on Twitter using #BrookingsEssay or share this on Facebook .

This Essay is also available as an eBook from these online retailers: Amazon Kindle , Barnes & Noble , Apple iTunes , Google Play , Ebooks.com , and on Kobo .

This article was written by Josh Freed, vice president of the Clean Energy Program at Third Way. The author has not personally received any compensation from the nuclear energy industry. In the spirit of maximum transparency, however, the author has disclosed that several entities mentioned in this article are associated in varying degrees with Third Way. The Nuclear Energy Institute (NEI) and Babcock & Wilcox have financially supported Third Way. NEI includes TerraPower, Babcock & Wilcox, and Idaho National Lab among its members, as well as Fluor on its Board of Directors. Transatomic is not a member of NEI, but Dr. Leslie Dewan has appeared in several of its advertisements. Third Way is also working with and has received funding from Ray Rothrock, although he was not consulted on the contents of this essay. Third Way previously held a joint event with the Idaho National Lab that was unrelated to the subject of this essay.

* The essay originally also referred to Hitachi buying GE's nuclear arm. GE owns 60 percent of Hitachi.

Like other products of the Institution, The Brookings Essay is intended to contribute to discussion and stimulate debate on important issues. The views are solely those of the author.

Graphic Design: Marcia Underwood and Jessica Pavone Research: Fred Dews, Thomas Young, Jessica Pavone, Kevin Hawkins Editorial: Beth Rashbaum and Fred Dews Web Development: Marcia Underwood and Kevin Hawkins Video: George Burroughs- Director, Ian McAllister- Technical Director, Sareen Hairabedian and Mark Hoelscher Directors of Photography, Sareen Hairabedian- Editor, Mark Hoelscher- Color Correction and Graphics, Zachary Kulzer- Sound, Thomas Young- Producer

1775 Massachusetts Ave, NW, Washington , DC 20036

  • Media Relations

More Brookings Essays

Published 12/12/2014

© 2014 The Brookings Institution

  • Terms and Conditions
  • Brookings Privacy Policy

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction

World nuclear power

  • Radioactive-waste disposal
  • Proliferation

nuclear power plant diagram

  • What happened in the Chernobyl disaster?
  • How many people died as a result of the Chernobyl disaster?
  • How big was the exclusion zone created after the Chernobyl disaster?
  • How did the Fukushima accident happen?
  • What happened after the Fukushima accident?

Wide angle view of Pripyat from Polissya Hotel. Chernobyl nuclear power plant zone of alienation.

nuclear power

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Union of Concerned Scientists - How Nuclear Power Works
  • U.S. Energy Information Administration - Nuclear Explained
  • Energy Education - Nuclear power
  • National Center for Biotechnology Information - PubMed Central - Nuclear power in the 21st century: Challenges and possibilities
  • Table Of Contents

nuclear power plant diagram

Recent News

nuclear power , electricity generated by power plants that derive their heat from fission in a nuclear reactor . Except for the reactor, which plays the role of a boiler in a fossil-fuel power plant, a nuclear power plant is similar to a large coal-fired power plant, with pumps, valves, steam generators, turbines, electric generators, condensers, and associated equipment.

What is the difference between nuclear fission and fusion?

Nuclear power provides almost 15 percent of the world’s electricity . The first nuclear power plants, which were small demonstration facilities, were built in the 1960s. These prototypes provided “proof-of-concept” and laid the groundwork for the development of the higher-power reactors that followed.

The nuclear power industry went through a period of remarkable growth until about 1990, when the portion of electricity generated by nuclear power reached a high of 17 percent. That percentage remained stable through the 1990s and began to decline slowly around the turn of the 21st century, primarily because of the fact that total electricity generation grew faster than electricity from nuclear power while other sources of energy (particularly coal and natural gas) were able to grow more quickly to meet the rising demand. This trend appears likely to continue well into the 21st century. The Energy Information Administration (EIA), a statistical arm of the U.S. Department of Energy , has projected that world electricity generation between 2005 and 2035 will roughly double (from more than 15,000 terawatt-hours to 35,000 terawatt-hours) and that generation from all energy sources except petroleum will continue to grow.

In 2012 more than 400 nuclear reactors were in operation in 30 countries around the world, and more than 60 were under construction. The United States has the largest nuclear power industry, with more than 100 reactors; it is followed by France, which has more than 50. Of the top 15 electricity-producing countries in the world, all but two, Italy and Australia, utilize nuclear power to generate some of their electricity. The overwhelming majority of nuclear reactor generating capacity is concentrated in North America , Europe, and Asia. The early period of the nuclear power industry was dominated by North America (the United States and Canada), but in the 1980s that lead was overtaken by Europe. The EIA projects that Asia will have the largest nuclear capacity by 2035, mainly because of an ambitious building program in China .

A typical nuclear power plant has a generating capacity of approximately one gigawatt (GW; one billion watts) of electricity. At this capacity, a power plant that operates about 90 percent of the time (the U.S. industry average) will generate about eight terawatt-hours of electricity per year. The predominant types of power reactors are pressurized water reactors (PWRs) and boiling water reactors (BWRs), both of which are categorized as light water reactors (LWRs) because they use ordinary (light) water as a moderator and coolant. LWRs make up more than 80 percent of the world’s nuclear reactors, and more than three-quarters of the LWRs are PWRs.

Issues affecting nuclear power

Countries may have a number of motives for deploying nuclear power plants, including a lack of indigenous energy resources, a desire for energy independence, and a goal to limit greenhouse gas emissions by using a carbon-free source of electricity. The benefits of applying nuclear power to these needs are substantial, but they are tempered by a number of issues that need to be considered, including the safety of nuclear reactors, their cost, the disposal of radioactive waste, and a potential for the nuclear fuel cycle to be diverted to the development of nuclear weapons. All of these concerns are discussed below.

The safety of nuclear reactors has become paramount since the Fukushima accident of 2011. The lessons learned from that disaster included the need to (1) adopt risk-informed regulation, (2) strengthen management systems so that decisions made in the event of a severe accident are based on safety and not cost or political repercussions , (3) periodically assess new information on risks posed by natural hazards such as earthquakes and associated tsunamis, and (4) take steps to mitigate the possible consequences of a station blackout.

The four reactors involved in the Fukushima accident were first-generation BWRs designed in the 1960s. Newer Generation III designs, on the other hand, incorporate improved safety systems and rely more on so-called passive safety designs (i.e., directing cooling water by gravity rather than moving it by pumps) in order to keep the plants safe in the event of a severe accident or station blackout. For instance, in the Westinghouse AP1000 design, residual heat would be removed from the reactor by water circulating under the influence of gravity from reservoirs located inside the reactor’s containment structure. Active and passive safety systems are incorporated into the European Pressurized Water Reactor (EPR) as well.

Traditionally, enhanced safety systems have resulted in higher construction costs, but passive safety designs, by requiring the installation of far fewer pumps, valves, and associated piping, may actually yield a cost saving.

  • ENVIRONMENT

What is nuclear energy and is it a viable resource?

Nuclear energy's future as an electricity source may depend on scientists' ability to make it cheaper and safer.

Nuclear power is generated by splitting atoms to release the energy held at the core, or nucleus, of those atoms. This process, nuclear fission, generates heat that is directed to a cooling agent—usually water. The resulting steam spins a turbine connected to a generator, producing electricity.

About 450 nuclear reactors provide about 11 percent of the world's electricity. The countries generating the most nuclear power are, in order, the United States, France, China, Russia, and South Korea.

The most common fuel for nuclear power is uranium, an abundant metal found throughout the world. Mined uranium is processed into U-235, an enriched version used as fuel in nuclear reactors because its atoms can be split apart easily.

In a nuclear reactor, neutrons—subatomic particles that have no electric charge—collide with atoms, causing them to split. That collision—called nuclear fission—releases more neutrons that react with more atoms, creating a chain reaction. A byproduct of nuclear reactions, plutonium , can also be used as nuclear fuel.

Types of nuclear reactors

In the U.S. most nuclear reactors are either boiling water reactors , in which the water is heated to the boiling point to release steam, or pressurized water reactors , in which the pressurized water does not boil but funnels heat to a secondary water supply for steam generation. Other types of nuclear power reactors include gas-cooled reactors, which use carbon dioxide as the cooling agent and are used in the U.K., and fast neutron reactors, which are cooled by liquid sodium.

Nuclear energy history

The idea of nuclear power began in the 1930s , when physicist Enrico Fermi first showed that neutrons could split atoms. Fermi led a team that in 1942 achieved the first nuclear chain reaction, under a stadium at the University of Chicago. This was followed by a series of milestones in the 1950s: the first electricity produced from atomic energy at Idaho's Experimental Breeder Reactor I in 1951; the first nuclear power plant in the city of Obninsk in the former Soviet Union in 1954; and the first commercial nuclear power plant in Shippingport, Pennsylvania, in 1957. ( Take our quizzes about nuclear power and see how much you've learned: for Part I, go here ; for Part II, go here .)

Nuclear power, climate change, and future designs

Nuclear power isn't considered renewable energy , given its dependence on a mined, finite resource, but because operating reactors do not emit any of the greenhouse gases that contribute to global warming , proponents say it should be considered a climate change solution . National Geographic emerging explorer Leslie Dewan, for example, wants to resurrect the molten salt reactor , which uses liquid uranium dissolved in molten salt as fuel, arguing it could be safer and less costly than reactors in use today.

Others are working on small modular reactors that could be portable and easier to build. Innovations like those are aimed at saving an industry in crisis as current nuclear plants continue to age and new ones fail to compete on price with natural gas and renewable sources such as wind and solar.

The holy grail for the future of nuclear power involves nuclear fusion, which generates energy when two light nuclei smash together to form a single, heavier nucleus. Fusion could deliver more energy more safely and with far less harmful radioactive waste than fission, but just a small number of people— including a 14-year-old from Arkansas —have managed to build working nuclear fusion reactors. Organizations such as ITER in France and Max Planck Institute of Plasma Physics are working on commercially viable versions, which so far remain elusive.

Nuclear power risks

When arguing against nuclear power, opponents point to the problems of long-lived nuclear waste and the specter of rare but devastating nuclear accidents such as those at Chernobyl in 1986 and Fukushima Daiichi in 2011 . The deadly Chernobyl disaster in Ukraine happened when flawed reactor design and human error caused a power surge and explosion at one of the reactors. Large amounts of radioactivity were released into the air, and hundreds of thousands of people were forced from their homes . Today, the area surrounding the plant—known as the Exclusion Zone—is open to tourists but inhabited only by the various wildlife species, such as gray wolves , that have since taken over .

In the case of Japan's Fukushima Daiichi, the aftermath of the Tohoku earthquake and tsunami caused the plant's catastrophic failures. Several years on, the surrounding towns struggle to recover, evacuees remain afraid to return , and public mistrust has dogged the recovery effort, despite government assurances that most areas are safe.

Other accidents, such as the partial meltdown at Pennsylvania's Three Mile Island in 1979, linger as terrifying examples of nuclear power's radioactive risks. The Fukushima disaster in particular raised questions about safety of power plants in seismic zones, such as Armenia's Metsamor power station.

Other issues related to nuclear power include where and how to store the spent fuel, or nuclear waste, which remains dangerously radioactive for thousands of years. Nuclear power plants, many of which are located on or near coasts because of the proximity to water for cooling, also face rising sea levels and the risk of more extreme storms due to climate change.

Related Topics

  • NUCLEAR ENERGY
  • NUCLEAR WEAPONS
  • TOXIC WASTE
  • RENEWABLE ENERGY

You May Also Like

essay on nuclear power

This pill could protect us from radiation after a nuclear meltdown

essay on nuclear power

Scientists achieve a breakthrough in nuclear fusion. Here’s what it means.

essay on nuclear power

This young nuclear engineer has a new plan for clean energy

essay on nuclear power

The true history of Einstein's role in developing the atomic bomb

essay on nuclear power

Who is Oppenheimer? The controversial man behind the atomic bomb

  • Best of the World
  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Out of Eden Walk
  • Mind, Body, Wonder
  • Here Not There
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

essay on nuclear power

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on nuclear power

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on nuclear power

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Nuclear Energy in 500+ words for School Students 

essay on nuclear power

  • Updated on  
  • Dec 30, 2023

Essay on Nuclear Energy

Essay on Nuclear Energy: Nuclear energy has been fascinating and controversial since the beginning. Using atomic power to generate electricity holds the promise of huge energy supplies but we cannot overlook the concerns about safety, environmental impact, and the increase in potential weapon increase. 

The blog will help you to explore various aspects of energy seeking its history, advantages, disadvantages, and role in addressing the global energy challenge. 

Table of Contents

  • 1 History Overview
  • 2 Nuclear Technology 
  • 3 Advantages of Nuclear Energy
  • 4 Disadvantages of Nuclear Energy
  • 5 Safety Measures and Regulations of Nuclear Energy
  • 6 Concerns of Nuclear Proliferation
  • 7 Future Prospects and Innovations of Nuclear Energy
  • 8 FAQs 

Also Read: Find List of Nuclear Power Plants In India

History Overview

The roots of nuclear energy have their roots back to the early 20th century when innovative discoveries in physics laid the foundation for understanding atomic structure. In the year 1938, Otto Hahn, a German chemist and Fritz Stassman, a German physical chemist discovered nuclear fission, the splitting of atomic nuclei. This discovery opened the way for utilising the immense energy released during the process of fission. 

Also Read: What are the Different Types of Energy?

Nuclear Technology 

Nuclear power plants use controlled fission to produce heat. The heat generated is further used to produce steam, by turning the turbines connected to generators that produce electricity. This process takes place in two types of reactors: Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). PWRs use pressurised water to transfer heat. Whereas, BWRs allow water to boil, which produces steam directly. 

Also Read: Nuclear Engineering Course: Universities and Careers

Advantages of Nuclear Energy

Let us learn about the positive aspects of nuclear energy in the following:

1. High Energy Density

Nuclear energy possesses an unparalleled energy density which means that a small amount of nuclear fuel can produce a substantial amount of electricity. This high energy density efficiency makes nuclear power reliable and powerful.

2. Low Greenhouse Gas Emissions

Unlike other traditional fossil fuels, nuclear power generation produces minimum greenhouse gas emissions during electricity generation. The low greenhouse gas emissions feature positions nuclear energy as a potential solution to weakening climate change.

3. Base Load Power

Nuclear power plants provide consistent, baseload power, continuously operating at a stable output level. This makes nuclear energy reliable for meeting the constant demand for electricity, complementing intermittent renewable sources of energy like wind and solar. 

Also Read: How to Become a Nuclear Engineer in India?

Disadvantages of Nuclear Energy

After learning the pros of nuclear energy, now let’s switch to the cons of nuclear energy.

1. Radioactive Waste

One of the most important challenges that is associated with nuclear energy is the management and disposal of radioactive waste. Nuclear power gives rise to spent fuel and other radioactive byproducts that require secure, long-term storage solutions.

2. Nuclear Accidents

The two catastrophic accidents at Chornobyl in 1986 and Fukushima in 2011 underlined the potential risks of nuclear power. These nuclear accidents can lead to severe environmental contamination, human casualties, and long-lasting negative perceptions of the technology. 

3. High Initial Costs

The construction of nuclear power plants includes substantial upfront costs. Moreover, stringent safety measures contribute to the overall expenses, which makes nuclear energy economically challenging compared to some renewable alternatives. 

Also Read: What is the IAEA Full Form?

Safety Measures and Regulations of Nuclear Energy

After recognizing the potential risks associated with nuclear energy, strict safety measures and regulations have been implemented worldwide. These safety measures include reactor design improvements, emergency preparedness, and ongoing monitoring of the plant operations. Regulatory bodies, such as the Nuclear Regulatory Commission (NRC) in the United States, play an important role in overseeing and enforcing safety standards. 

Also Read: What is the Full Form of AEC?

Concerns of Nuclear Proliferation

The dual-use nature of nuclear technology raises concerns about the spread of nuclear weapons. The same nuclear technology used for the peaceful generation of electricity can be diverted for military purposes. International efforts, including the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), aim to help the proliferation of nuclear weapons and promote the peaceful use of nuclear energy. 

Also Read: Dr. Homi J. Bhabha’s Education, Inventions & Discoveries

Also Read: How to Prepare for UPSC in 6 Months?

Future Prospects and Innovations of Nuclear Energy

The ongoing research and development into advanced reactor technologies are part of nuclear energy. Concepts like small modular reactors (SMRs) and Generation IV reactors aim to address safety, efficiency, and waste management concerns. Moreover, the exploration of nuclear fusion as a clean and virtually limitless energy source represents an innovation for future energy solutions. 

Nuclear energy stands at the crossroads of possibility and peril, offering the possibility of addressing the world´s growing energy needs while posing important challenges. Striking a balance between utilising the benefits of nuclear power and alleviating its risks requires ongoing technological innovation, powerful safety measures, and international cooperation. 

As we drive the complexities of perspective challenges of nuclear energy, the role of nuclear energy in the global energy mix remains a subject of ongoing debate and exploration. 

Also Read: Essay on Science and Technology for Students: 100, 200, 350 Words

Ans. Nuclear energy is the energy released during nuclear reactions. Its importance lies in generating electricity, medical applications, and powering spacecraft.

Ans. Nuclear energy is exploited from the nucleus of atoms through processes like fission or fusion. It is a powerful and controversial energy source with applications in power generation and various technologies. 

Ans. The five benefits of nuclear energy include: 1. Less greenhouse gas emissions 2. High energy density 3. Continuos power generation  4. Relatively low fuel consumption 5. Potential for reducing dependence on fossil fuels

Ans. Three important facts about nuclear energy: a. Nuclear fission releases a significant amount of energy. b. Nuclear power plants use controlled fission reactions to generate electricity. c. Nuclear fusion, combining atomic nuclei, is a potential future energy source.

Ans. Nuclear energy is considered best due to its low carbon footprint, high energy output, and potential to address energy needs. However, concerns about safety, radioactive waste, and proliferation risk are challenges that need careful consideration.

Related Articles


For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Deepika Joshi

Deepika Joshi is an experienced content writer with educational and informative content expertise. She has hands-on experience in Education, Study Abroad and EdTech SaaS. Her strengths lie in conducting thorough research and analysis to provide accurate and up-to-date information to readers. She enjoys staying updated on new skills and knowledge, particularly in the education domain. In her free time, she loves to read articles, and blogs related to her field to expand her expertise further. In her personal life, she loves creative writing and aspires to connect with innovative people who have fresh ideas to offer.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay on nuclear power

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

essay on nuclear power

Resend OTP in

essay on nuclear power

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay on nuclear power

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay on nuclear power

Make your study abroad dream a reality in January 2022 with

essay on nuclear power

India's Biggest Virtual University Fair

essay on nuclear power

Essex Direct Admission Day

Why attend .

essay on nuclear power

Don't Miss Out

 / 

The 3,122-megawatt Civaux Nuclear Power Plant in France, which opened in 1997. GUILLAUME SOUVANT / AFP / Getty Images

Why Nuclear Power Must Be Part of the Energy Solution

By Richard Rhodes • July 19, 2018

Many environmentalists have opposed nuclear power, citing its dangers and the difficulty of disposing of its radioactive waste. But a Pulitzer Prize-winning author argues that nuclear is safer than most energy sources and is needed if the world hopes to radically decrease its carbon emissions. 

In the late 16th century, when the increasing cost of firewood forced ordinary Londoners to switch reluctantly to coal, Elizabethan preachers railed against a fuel they believed to be, literally, the Devil’s excrement. Coal was black, after all, dirty, found in layers underground — down toward Hell at the center of the earth — and smelled strongly of sulfur when it burned. Switching to coal, in houses that usually lacked chimneys, was difficult enough; the clergy’s outspoken condemnation, while certainly justified environmentally, further complicated and delayed the timely resolution of an urgent problem in energy supply.

For too many environmentalists concerned with global warming, nuclear energy is today’s Devil’s excrement. They condemn it for its production and use of radioactive fuels and for the supposed problem of disposing of its waste. In my judgment, their condemnation of this efficient, low-carbon source of baseload energy is misplaced. Far from being the Devil’s excrement, nuclear power can be, and should be, one major component of our rescue from a hotter, more meteorologically destructive world.

Like all energy sources, nuclear power has advantages and disadvantages. What are nuclear power’s benefits? First and foremost, since it produces energy via nuclear fission rather than chemical burning, it generates baseload electricity with no output of carbon, the villainous element of global warming. Switching from coal to natural gas is a step toward decarbonizing, since burning natural gas produces about half the carbon dioxide of burning coal. But switching from coal to nuclear power is radically decarbonizing, since nuclear power plants release greenhouse gases only from the ancillary use of fossil fuels during their construction, mining, fuel processing, maintenance, and decommissioning — about as much as solar power does, which is about 4 to 5 percent as much as a natural gas-fired power plant.

Nuclear power releases less radiation into the environment than any other major energy source.

Second, nuclear power plants operate at much higher capacity factors than renewable energy sources or fossil fuels. Capacity factor is a measure of what percentage of the time a power plant actually produces energy. It’s a problem for all intermittent energy sources. The sun doesn’t always shine, nor the wind always blow, nor water always fall through the turbines of a dam.

In the United States in 2016, nuclear power plants, which generated almost 20 percent of U.S. electricity, had an average capacity factor of 92.3 percent , meaning they operated at full power on 336 out of 365 days per year. (The other 29 days they were taken off the grid for maintenance.) In contrast , U.S. hydroelectric systems delivered power 38.2 percent of the time (138 days per year), wind turbines 34.5 percent of the time (127 days per year) and solar electricity arrays only 25.1 percent of the time (92 days per year). Even plants powered with coal or natural gas only generate electricity about half the time for reasons such as fuel costs and seasonal and nocturnal variations in demand. Nuclear is a clear winner on reliability.

Third, nuclear power releases less radiation into the environment than any other major energy source. This statement will seem paradoxical to many readers, since it’s not commonly known that non-nuclear energy sources release any radiation into the environment. They do. The worst offender is coal, a mineral of the earth’s crust that contains a substantial volume of the radioactive elements uranium and thorium. Burning coal gasifies its organic materials, concentrating its mineral components into the remaining waste, called fly ash. So much coal is burned in the world and so much fly ash produced that coal is actually the major source of radioactive releases into the environment. 

Anti-nuclear activists protest the construction of a nuclear power station in Seabrook, New Hampshire in 1977.  AP Photo

In the early 1950s, when the U.S. Atomic Energy Commission believed high-grade uranium ores to be in short supply domestically, it considered extracting uranium for nuclear weapons from the abundant U.S. supply of fly ash from coal burning. In 2007, China began exploring such extraction, drawing on a pile of some 5.3 million metric tons of brown-coal fly ash at Xiaolongtang in Yunnan. The Chinese ash averages about 0.4 pounds of triuranium octoxide (U3O8), a uranium compound, per metric ton. Hungary and South Africa are also exploring uranium extraction from coal fly ash. 

What are nuclear’s downsides? In the public’s perception, there are two, both related to radiation: the risk of accidents, and the question of disposal of nuclear waste.

There have been three large-scale accidents involving nuclear power reactors since the onset of commercial nuclear power in the mid-1950s: Three-Mile Island in Pennsylvania, Chernobyl in Ukraine, and Fukushima in Japan.

Studies indicate even the worst possible accident at a nuclear plant is less destructive than other major industrial accidents.

The partial meltdown of the Three-Mile Island reactor in March 1979, while a disaster for the owners of the Pennsylvania plant, released only a minimal quantity of radiation to the surrounding population. According to the U.S. Nuclear Regulatory Commission :

“The approximately 2 million people around TMI-2 during the accident are estimated to have received an average radiation dose of only about 1 millirem above the usual background dose. To put this into context, exposure from a chest X-ray is about 6 millirem and the area’s natural radioactive background dose is about 100-125 millirem per year… In spite of serious damage to the reactor, the actual release had negligible effects on the physical health of individuals or the environment.”

The explosion and subsequent burnout of a large graphite-moderated, water-cooled reactor at Chernobyl in 1986 was easily the worst nuclear accident in history. Twenty-nine disaster relief workers died of acute radiation exposure in the immediate aftermath of the accident. In the subsequent three decades, UNSCEAR — the United Nations Scientific Committee on the Effects of Atomic Radiation, composed of senior scientists from 27 member states — has observed and reported at regular intervals on the health effects of the Chernobyl accident. It has identified no long-term health consequences to populations exposed to Chernobyl fallout except for thyroid cancers in residents of Belarus, Ukraine and western Russia who were children or adolescents at the time of the accident, who drank milk contaminated with 131iodine, and who were not evacuated. By 2008, UNSCEAR had attributed some 6,500 excess cases of thyroid cancer in the Chernobyl region to the accident, with 15 deaths.  The occurrence of these cancers increased dramatically from 1991 to 1995, which researchers attributed mostly to radiation exposure. No increase occurred in adults.

The Diablo Canyon Nuclear Power Plant, located near Avila Beach, California, will be decommissioned starting in 2024. Pacific Gas and Electric

“The average effective doses” of radiation from Chernobyl, UNSCEAR also concluded , “due to both external and internal exposures, received by members of the general public during 1986-2005 [were] about 30 mSv for the evacuees, 1 mSv for the residents of the former Soviet Union, and 0.3 mSv for the populations of the rest of Europe.”  A sievert is a measure of radiation exposure, a millisievert is one-one-thousandth of a sievert. A full-body CT scan delivers about 10-30 mSv. A U.S. resident receives an average background radiation dose, exclusive of radon, of about 1 mSv per year.

The statistics of Chernobyl irradiations cited here are so low that they must seem intentionally minimized to those who followed the extensive media coverage of the accident and its aftermath. Yet they are the peer-reviewed products of extensive investigation by an international scientific agency of the United Nations. They indicate that even the worst possible accident at a nuclear power plant — the complete meltdown and burnup of its radioactive fuel — was yet far less destructive than other major industrial accidents across the past century. To name only two: Bhopal, in India, where at least 3,800 people died immediately and many thousands more were sickened when 40 tons of methyl isocyanate gas leaked from a pesticide plant; and Henan Province, in China, where at least 26,000 people drowned following the failure of a major hydroelectric dam in a typhoon. “Measured as early deaths per electricity units produced by the Chernobyl facility (9 years of operation, total electricity production of 36 GWe-years, 31 early deaths) yields 0.86 death/GWe-year),” concludes Zbigniew Jaworowski, a physician and former UNSCEAR chairman active during the Chernobyl accident. “This rate is lower than the average fatalities from [accidents involving] a majority of other energy sources. For example, the Chernobyl rate is nine times lower than the death rate from liquefied gas… and 47 times lower than from hydroelectric stations.” 

Nuclear waste disposal, although a continuing political problem, is not any longer a technological problem.

The accident in Japan at Fukushima Daiichi in March 2011 followed a major earthquake and tsunami. The tsunami flooded out the power supply and cooling systems of three power reactors, causing them to melt down and explode, breaching their confinement. Although 154,000 Japanese citizens were evacuated from a 12-mile exclusion zone around the power station, radiation exposure beyond the station grounds was limited. According to the report submitted to the International Atomic Energy Agency in June 2011:

“No harmful health effects were found in 195,345 residents living in the vicinity of the plant who were screened by the end of May 2011. All the 1,080 children tested for thyroid gland exposure showed results within safe limits. By December, government health checks of some 1,700 residents who were evacuated from three municipalities showed that two-thirds received an external radiation dose within the normal international limit of 1 mSv/year, 98 percent were below 5 mSv/year, and 10 people were exposed to more than 10 mSv… [There] was no major public exposure, let alone deaths from radiation.” 

Nuclear waste disposal, although a continuing political problem in the U.S., is not any longer a technological problem. Most U.S. spent fuel, more than 90 percent of which could be recycled to extend nuclear power production by hundreds of years, is stored at present safely in impenetrable concrete-and-steel dry casks on the grounds of operating reactors, its radiation slowly declining. 

An activist in March 2017 demanding closure of the Fessenheim Nuclear Power Plant in France. Authorities announced in April that they will close the facility by 2020. SEBASTIEN BOZON / AFP / Getty Images

The U.S. Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico currently stores low-level and transuranic military waste and could store commercial nuclear waste in a 2-kilometer thick bed of crystalline salt, the remains of an ancient sea. The salt formation extends from southern New Mexico all the way northeast to southwestern Kansas. It could easily accommodate the entire world’s nuclear waste for the next thousand years.

Finland is even further advanced in carving out a permanent repository in granite bedrock 400 meters under Olkiluoto, an island in the Baltic Sea off the nation’s west coast. It expects to begin permanent waste storage in 2023.

A final complaint against nuclear power is that it costs too much. Whether or not nuclear power costs too much will ultimately be a matter for markets to decide, but there is no question that a full accounting of the external costs of different energy systems would find nuclear cheaper than coal or natural gas. 

Nuclear power is not the only answer to the world-scale threat of global warming. Renewables have their place; so, at least for leveling the flow of electricity when renewables vary, does natural gas. But nuclear deserves better than the anti-nuclear prejudices and fears that have plagued it. It isn’t the 21st century’s version of the Devil’s excrement. It’s a valuable, even an irreplaceable, part of the solution to the greatest energy threat in the history of humankind.

Related Articles

On gulf coast, an activist rallies her community against gas exports.

By Jocelyn C. Zuckerman

Can a California Oilfield Be Retrofitted to Store Solar Energy?

By Stephen Robert Miller

In a Dammed and Diked Mekong, a Push to Restore the Flow

By Stefan Lovgren

More From E360

E360 film contest, for 60,000 years, australia’s first nations have put fire to good use, faced with heavier rains, cities scramble to control polluted runoff, in montana’s northern plains, swift foxes are back from the brink, as canadian river shrivels, northern communities call for a highway, in warming world, global heat deaths are grossly undercounted, biodiversity, the ‘internet of animals’ could transform what we know about wildlife, grim dilemma: should we kill one owl species to save another, with co2 levels rising, world’s drylands are turning green, as world’s springs vanish, ripple effects alter ecosystems, the race to save glacial ice records before they melt away, turning brownfields to blooming meadows, with the help of fungi.

Home

Press centre

Nuclear technology and applications.

  • Climate change
  • Environment
  • Food and agriculture
  • Nuclear science

Nuclear safety and security

  • Human and organizational factors
  • Governmental, legal and regulatory framework
  • Nuclear installation safety
  • Radiation protection
  • Security of nuclear and other radioactive material
  • Radioactive waste and spent fuel management
  • Emergency preparedness and response

Safeguards and verification

  • Basics of IAEA Safeguards
  • Safeguards implementation
  • Safeguards legal framework
  • Assistance for States
  • Member States Support Programmes

Technical Cooperation Programme

  • How it works
  • How to participate

Coordinated research activities

  • Legislative assistance

Key programmes

  • Atoms4NetZero
  • International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)
  • Together for More Women in Nuclear
  • NUTEC Plastics
  • Peaceful Uses Initiative
  • Rays of Hope
  • The SMR Platform and Nuclear Harmonization and Standardization Initiative (NHSI)
  • Zoonotic Disease Integrated Action (ZODIAC)

Review missions and advisory services

  • Catalogue of review missions and advisory services
  • Peer review and advisory services calendar

Laboratory services

  • Analytical reference materials
  • Dosimetry calibration
  • Dosimetry auditing
  • Inter-laboratory comparisons
  • Global Nuclear Safety and Security Network (GNSSN)

Education and training

  • Training courses
  • Online learning

Scientific and technical publications

  • Full catalogue
  • Safety Standards
  • Nuclear Security Series
  • Nuclear Energy Series
  • Human Health Series
  • Conference Proceedings
  • Newsletters
  • Nuclear Fusion Journal

General interest material

  • IAEA Bulletin
  • Nuclear Explained
  • Photos (Flickr)
  • Photo essays
  • Briefs and factsheets
  • IAEA Virtual Tours

Official documents

  • Information circulars

NUCLEUS information resources

  • International Nuclear Information System (INIS)
  • Power Reactor Information System (PRIS)
  • Advanced Reactors Information System (ARIS)
  • Integrated Nuclear Fuel Cycle Information System (iNFCIS)
  • Spent Fuel and Radioactive Waste Information System (SRIS)
  • Nuclear Data Services (NDS)
  • Research Reactor Database (RRDB)

Other resources

  • Library – Nuclear Information Services
  • Impact stories
  • Press releases
  • Media advisories
  • Director General statements
  • Photo library
  • Press contacts
  • Press enquiries
  • General Conference
  • Board of Governors
  • Scientific and technical events
  • Scientific Forum
  • Medium-Term Strategy
  • Partnerships
  • Gender at the IAEA
  • Sustainable Development Goals (SDGs)
  • Multilingual content
  • List of Member States

Management team

  • Director General
  • Deputy Directors General

Organizational structure

  • Offices Reporting to the Director General
  • Technical Cooperation
  • Nuclear Energy
  • Nuclear Safety and Security
  • Nuclear Sciences and Applications
  • Working at the IAEA
  • Types of Employment

Procurement

  • Procurement overview

Search form

You are here.

  • Biodiversity loss
  • Assessing health effects
  • Nuclear power and climate change
  • Water and climate change
  • Oceans and climate change
  • Food security and climate change
  • The IAEA and CoP

essay on nuclear power

If you would like to learn more about the IAEA’s work, sign up for our weekly updates containing our most important news, multimedia and more.

  • Arabic (monthly)
  • Chinese (monthly)
  • English (weekly)
  • French (monthly)
  • Russian (monthly)
  • Spanish (monthly)

nuclear power and climate change

Nuclear power and climate change: Decarbonization

With the adoption of the Paris Agreement in 2015, almost all Parties to the United Nations Framework Convention on Climate Change (UNFCCC) agreed to prepare nationally determined contributions (NDCs) to control GHG emissions and limit the increase of global mean surface temperature by the end of the century to below 2°C relative to pre-industrial levels. Since then, increasing scientific understanding of the significant risks associated with warming of 2°C, along with increasing societal concern, have established the need for more urgent and ambitious action to avoid the worst impacts of climate change, by limiting warming to 1.5°C.

To reach this goal, carbon dioxide (CO 2 ) emissions from electricity generation must fall to nearly zero by the middle of this century, even as electricity needs worldwide continue to grow and expand in end-uses such as transportation, heating and industrial energy use.

essay on nuclear power

Nuclear power is a low-carbon source of energy. In 2018, nuclear power produced about 10 percent of the world’s electricity. Together with the expanding renewable energy sources and fuel switching from coal to gas, higher nuclear power production contributed to the levelling of global CO 2 emissions at 33 gigatonnes in 2019 1/ . Clearly, nuclear power – as a dispatchable low carbon source of electricity – can play a key role in the transition to a clean energy future.

As part of the capacity building process for energy system analysis and planning , the IAEA provides assistance to Member States for the evaluation of the role of nuclear energy in national climate change mitigation strategies through the Technical Cooperation programme and Coordinated Research Projects . For this purpose, a comprehensive set of IAEA tools and methodologies are available to Member States.

__________ 1/ Articles on global CO 2 emissions in 2019

essay on nuclear power

How Can We Get Carbon Emissions to Net Zero?

essay on nuclear power

IAEA Releases Nuclear Power Data and Operating Experience for 2023

essay on nuclear power

IAEA Milestones Guidance Updated to Include Considerations for SMRs

essay on nuclear power

IAEA DG Grossi to World Bank: Global Consensus Calls for Nuclear Expansion, This Needs Financial Support

essay on nuclear power

Director General: "Brazil Needs Nuclear and Nuclear Needs Brazil"

  • Publications

essay on nuclear power

The Climate, Land, Energy and Water Framework

essay on nuclear power

Nuclear Cogeneration for Climate Change Mitigation and Sustainable Development Goals

essay on nuclear power

Nuclear Energy in Mitigation Pathways to Net Zero

essay on nuclear power

Nuclear Energy in Climate Resilient Power Systems

Related resources.

  • How Can Nuclear Replace Coal as Part of the Clean Energy Transition?
  • Transitions to low carbon electricity systems: Key economic and investments trends: Changing course in a post-pandemic world
  • Climate Change and Nuclear Power 2022
  • Climate Change and Nuclear Power 2022: Securing Clean Energy for Climate Resilience
  • Climate Change and Nuclear Power 2020
  • Nuclear Power for Sustainable Development
  • Nuclear Power and Market Mechanisms under the Paris Agreement
  • Nuclear Power and the Paris Agreement
  • Interlinkage of Climate, Land, Energy and Water Use (CLEW)
  • Climate Change and Nuclear Power 2018
  • International Conference on Climate Change and the Role of Nuclear Power, 7-11 October 2019
  • International Conference on Climate Change and the Role of Nuclear Power: Conference President’s Summary, 11 October 2019

essay on nuclear power

Related pages

  • Sustainable Development Goal 7: Affordable and clean energy
  • Department of Nuclear Energy
  • Department of Nuclear Sciences and Applications
  • Department of Technical Cooperation

More on the IAEA

  • Privacy Policy
  • Logo Usage Guidelines

Scientific resources

  • Information Circulars
  • Standards and guides
  • Safeguards and Additional Protocol

Stay in touch

Benefits and Disadvantages of Nuclear Energy

Jesse kuet march 22, 2018, submitted as coursework for ph241 , stanford university, winter 2018.

The Dukovany Power Plant, a typical light water reactor. (Source: )

According to the 2017 BP Statistical Review of World Energy, about 4.7% of the world's energy budget is dedicated to nuclear energy. [1] The utilization of nuclear power has been portrayed negatively in the media. Although there are severe consequences if a nuclear power plant goes awry, there are also many benefits associated with its usage. The purpose of this paper is to inform readers about the advantages and disadvantages of using nuclear power to create electrical energy.

Advantages of Nuclear Power

Most light water reactors (See Fig. 1) that make up the world's nuclear capacity create electricity at costs of between $0.025 and $0.07 USD per kilowatt-hour dependent upon the design and requirements of each reactor, and experiences many favorable variables such as government subsidies and research. [2] To put into perspective, in California, the wholesale price to produce electricity from natural gas is approximately $0.05 USD per kilowatt-hour, revealing that nuclear energy may or may not be as costly as other alternatives in certain geographical areas. In addition, nuclear energy by far has the lowest impact on the environment since it does not release any gases like carbon dioxide or methane, which are largely responsible for the greenhouse effect." [3] As a result, this differentiates nuclear energy from fossil fuels in that it does not produce negative carbon externalities as a byproduct, "though some greenhouse gases are released while transporting fuel or extracting energy from uranium." [3] The factor of scarcity is not of concern when it comes to the reactors fuel source, which is primarily uranium. There are roughly 5.5 million tonnes of uranium in the known reserves that could be mined at $130 USD per kilogram. [2] Currently, with the world's consumption of around 66,500 tonnes per year, there is about 80 years worth of fuel with the known reserves since the element is relatively abundant in the earth's crust. The main advantage to nuclear energy is that is it relatively low-cost and consistently runs on its full potential, making it the ideal source to power national grids. [2,4]

Disadvantages of Nuclear Power

The hindrance in the growth of nuclear energy is due to many complex reasons, and a major component is the nuclear waste. The further implementations of nuclear power are limited because although nuclear energy does not produce CO 2 the way fossil fuels do, there is still a toxic byproduct produced from uranium-fueled nuclear cycles: radioactive fission waste. 1 tonne of fresh fuel rod waste from a nuclear reactor would give you a fatal dose of radiation in 10 seconds if placed 3 meters away. Plutonium is also of concern, as it increases an exposed person's potential in developing liver, bone, or lung cancer. [5] There is also a negative political perception associated with nuclear plants and nuclear weapons, so expansive growth of nuclear energy is difficult to accomplish. In addition, nuclear power plants could also be ideal targets for terrorists due to the fissile plutonium components of the waste, which could be reused as bomb fuel. [2] Also a terrorist attack on a large reactor would cause a widespread radiation catastrophe at a scale similar to Chernobyl. The final disadvantage is the plant's concentrated level of capital. Although the fuel cost to produce power using nuclear energy is relatively low, there is still the necessity of having highly skilled workers to build, maintain and monitor the operations to ensure the safety and process of the plant.

© Jesse Kuet. The author warrants that the work is the author's own and that Stanford University provided no input other than typesetting and referencing guidelines. The author grants permission to copy, distribute and display this work in unaltered form, with attribution to the author, for noncommercial purposes only. All other rights, including commercial rights, are reserved to the author.

[1] " BP Statistical Review of World Energy 2017 ," British Petroleum, June 2017.

[2] Q. Schiermeier, "Energy Alternatives: Electricity without Carbon," Nature 454 , 816 (2008).

[3] T. Thomas, " "Advantages of Nuclear Energy Use ," Physics 241, Stanford University, Winter 2016.

[4] G. Cravens, Power to Save the World: The Truth About Nuclear Energy (Knopf, 2008).

[5] D. M. Taylor, "Environmental Plutonium in Humans," Appl. Radiat. Isotopes 46 , 1245 (1995).

  • Phone This field is for validation purposes and should be left unchanged.
  • Climate Change
  • Policy & Economics
  • Biodiversity
  • Conservation

Get focused newsletters especially designed to be concise and easy to digest

  • ESSENTIAL BRIEFING 3 times weekly
  • TOP STORY ROUNDUP Once a week
  • MONTHLY OVERVIEW Once a month
  • Enter your email *
  • Email This field is for validation purposes and should be left unchanged.

The Advantages and Disadvantages of Nuclear Energy

The Advantages and Disadvantages of Nuclear Energy

Since the first nuclear plant started operations in the 1950s, the world has been highly divided on nuclear as a source of energy. While it is a cleaner alternative to fossil fuels, this type of power is also associated with some of the world’s most dangerous and deadliest weapons, not to mention nuclear disasters . The extremely high cost and lengthy process to build nuclear plants are compensated by the fact that producing nuclear energy is not nearly as polluting as oil and coal. In the race to net-zero carbon emissions, should countries still rely on nuclear energy or should they make space for more fossil fuels and renewable energy sources? We take a look at the advantages and disadvantages of nuclear energy. 

What Is Nuclear Energy?

Nuclear energy is the energy source found in an atom’s nucleus, or core. Once extracted, this energy can be used to produce electricity by creating nuclear fission in a reactor through two kinds of atomic reaction: nuclear fusion and nuclear fission. During the latter, uranium used as fuel causes atoms to split into two or more nuclei. The energy released from fission generates heat that brings a cooling agent, usually water, to boil. The steam deriving from boiling or pressurised water is then channelled to spin turbines to generate electricity. To produce nuclear fission, reactors make use of uranium as fuel.

For centuries, the industrialisation of economies around the world was made possible by fossil fuels like coal, natural gas, and petroleum and only in recent years countries opened up to alternative, renewable sources like solar and wind energy. In the 1950s, early commercial nuclear power stations started operations, offering to many countries around the world an alternative to oil and gas import dependency and a far less polluting energy source than fossil fuels. Following the 1970s energy crisis and the dramatic increase of oil prices that resulted from it, more and more countries decided to embark on nuclear power programmes. Indeed, most reactors have been built  between 1970 and 1985 worldwide. Today, nuclear energy meets around 10% of global energy demand , with 439 currently operational nuclear plants in 32 countries and about 55 new reactors under construction.

In 2020, 13 countries produced at least one-quarter of their total electricity from nuclear, with the US, China, and France dominating the market by far. 

World nuclear electricity production, 1970-2020 (Image: World Nuclear Association)

Fossil fuels make up 60% of the United States’ electricity while the remaining 40% is equally split between renewables and nuclear power. France embarked on a sweeping expansion of its nuclear power industry in the 1970s with the ultimate goal of breaking its dependence on foreign oil. In doing this, the country was able to build up its economy by simultaneously cutting its emissions at a rate never seen before. Today, France is home to 56 operating reactors and it relies on nuclear power for 70% of its electricity . 

You might also like: A ‘Breakthrough’ In Nuclear Fusion: What Does It Mean for the Future of Energy Generation?

Advantages of Nuclear Energy

France’s success in cutting down emissions is a clear example of some of the main advantages of nuclear energy over fossil fuels. First and foremost, nuclear energy is clean and it provides pollution-free power with no greenhouse gas emissions. Contrary to what many believe, cooling towers in nuclear plants only emit water vapour and are thus, not releasing any pollutant or radioactive substance into the atmosphere. Compared to all the energy alternatives we currently have on hand, many experts believe that nuclear energy is indeed one of the cleanest sources. Many nuclear energy supporters also argue that nuclear power is responsible for the fastest decarbonisation effort in history , with big nuclear players like France, Saudi Arabia, Canada, and South Korea being among the countries that recorded the fastest decline in carbon intensity and experienced a clean energy transition by building nuclear reactors and hydroelectric dams.

Earlier this year, the European Commission took a clear stance on nuclear power by labelling it a green source of energy in its classification system establishing a list of environmentally sustainable economic activities. While nuclear energy may be clean and its production emission-free, experts highlight a hidden danger of this power: nuclear waste. The highly radioactive and toxic byproduct from nuclear reactors can remain radioactive for tens of thousands of years. However, this is still considered a much easier environmental problem to solve than climate change. The main reason for this is that as much as 90% of the nuclear waste generated by the production of nuclear energy can be recycled. Indeed, the fuel used in a reactor, typically uranium, can be treated and put into another reactor as only a small amount of energy in their fuel is extracted in the fission process.

A rather important advantage of nuclear energy is that it is much safer than fossil fuels from a public health perspective. The pro-nuclear movement leverages the fact that nuclear waste is not even remotely as dangerous as the toxic chemicals coming from fossil fuels. Indeed, coal and oil act as ‘ invisible killers ’ and are responsible for 1 in 5 deaths worldwide . In 2018 alone, fossil fuels killed 8.7 million people globally. In contrast, in nearly 70 years since the beginning of nuclear power, only three accidents have raised public alarm: the 1979 Three Mile Island accident, the 1986 Chernobyl disaster and the 2011 Fukushima nuclear disaster. Of these, only the accident at the Chernobyl nuclear plant in Ukraine directly caused any deaths.

Finally, nuclear energy has some advantages compared to some of the most popular renewable energy sources. According to the US Office of Nuclear Energy , nuclear power has by far the highest capacity factor, with plants requiring less maintenance, capable to operate for up to two years before refuelling and able to produce maximum power more than 93% of the time during the year, making them three times more reliable than wind and solar plants. 

You might also like: Nuclear Energy: A Silver Bullet For Clean Energy?

Disadvantages of Nuclear Energy

The anti-nuclear movement opposes the use of this type of energy for several reasons. The first and currently most talked about disadvantage of nuclear energy is the nuclear weapon proliferation, a debate triggered by the deadly atomic bombing of the Japanese cities of Hiroshima and Nagasaki during the Second World War and recently reopened following rising concerns over nuclear escalation in the Ukraine-Russia conflict . After the world saw the highly destructive effect of these bombs, which caused the death of tens of thousands of people, not only in the impact itself but also in the days, weeks, and months after the tragedy as a consequence of radiation sickness, nuclear energy evolved to a pure means of generating electricity. In 1970, the Treaty on the Non-Proliferation of Nuclear Weapons entered into force. Its objective was to prevent the spread of such weapons to eventually achieve nuclear disarmament as well as promote peaceful uses of nuclear energy. However, opposers of this energy source still see nuclear energy as being deeply intertwined with nuclear weapons technologies and believe that, with nuclear technologies becoming globally available, the risk of them falling into the wrong hands is high, especially in countries with high levels of corruption and instability. 

As mentioned in the previous section, nuclear energy is clean. However, radioactive nuclear waste contains highly poisonous chemicals like plutonium and the uranium pellets used as fuel. These materials can be extremely toxic for tens of thousands of years and for this reason, they need to be meticulously and permanently disposed of. Since the 1950s, a stockpile of 250,000 tonnes of highly radioactive nuclear waste has been accumulated and distributed across the world, with 90,000 metric tons stored in the US alone. Knowing the dangers of nuclear waste, many oppose nuclear energy for fears of accidents, despite these being extremely unlikely to happen. Indeed, opposers know that when nuclear does fail, it can fail spectacularly. They were reminded of this in 2011, when the Fukushima disaster, despite not killing anyone directly, led to the displacement of more than 150,000 people, thousands of evacuation/related deaths and billions of dollars in cleanup costs. 

Lastly, if compared to other sources of energy, nuclear power is one of the most expensive and time-consuming forms of energy. Nuclear plants cost billions of dollars to build and they take much longer than any other infrastructure for renewable energy, sometimes even more than a decade. However, while nuclear power plants are expensive to build, they are relatively cheap to run , a factor that improves its competitiveness. Still, the long building process is considered a significant obstacle in the run to net-zero emissions that countries around the world have committed to. If they hope to meet their emission reduction targets in time, they cannot afford to rely on new nuclear plants.

You might also like: The Nuclear Waste Disposal Dilemma

Who Wins the Nuclear Debate?

There are a multitude of advantages and disadvantages of nuclear energy and the debate on whether to keep this technology or find other alternatives is destined to continue in the years to come.

Nuclear power can be a highly destructive weapon, but the risks of a nuclear catastrophe are relatively low. While historic nuclear disasters can be counted on the fingers of a single hand, they are remembered for their devastating impact and the life-threatening consequences they sparked (or almost sparked). However, it is important to remember that fossil fuels like coal and oil represent a much bigger threat and silently kill millions of people every year worldwide. 

Another big aspect to take into account, and one that is currently discussed by global leaders, is the dependence of some of the world’s largest economies on countries like Russia, Saudi Arabia, and Iraq for fossil fuels. While the 2011 Fukushima disaster, for example, pushed the then-German Chancellor Angela Merkel to close all of Germany’s nuclear plants, her decision only increased the country’s dependence on much more polluting Russian oil. Nuclear supporters argue that relying on nuclear energy would decrease the energy dependency from third countries. However, raw materials such as the uranium needed to make plants function would still need to be imported from countries like Canada, Kazakhstan, and Australia.

The debate thus shifts to another problem: which countries should we rely on for imports and, most importantly, is it worth keeping these dependencies?

This story is funded by readers like you

Our non-profit newsroom provides climate coverage free of charge and advertising. Your one-off or monthly donations play a crucial role in supporting our operations, expanding our reach, and maintaining our editorial independence.

About EO | Mission Statement | Impact & Reach | Write for us

About the Author

essay on nuclear power

Martina Igini

Top 7 Smart Cities in the World in 2024

Top 7 Smart Cities in the World in 2024

What the Future of Renewable Energy Looks Like

What the Future of Renewable Energy Looks Like

The Environmental Impacts of Lithium and Cobalt Mining

The Environmental Impacts of Lithium and Cobalt Mining

Hand-picked stories weekly or monthly. We promise, no spam!

Boost this article By donating us $100, $50 or subscribe to Boosting $10/month – we can get this article and others in front of tens of thousands of specially targeted readers. This targeted Boosting – helps us to reach wider audiences – aiming to convince the unconvinced, to inform the uninformed, to enlighten the dogmatic.

Energy.gov Home

Nuclear energy protects air quality by producing massive amounts of carbon-free electricity. It powers communities in 28 U.S. states and contributes to many non-electric applications, ranging from the  medical field to space exploration .

The Office of Nuclear Energy within the U.S. Department of Energy (DOE) focuses its research primarily on maintaining the existing fleet of reactors, developing new advanced reactor technologies, and improving the nuclear fuel cycle to increase the sustainability of our energy supply and strengthen the U.S. economy.

Below are some of the main advantages of nuclear energy and the challenges currently facing the industry today.

Advantages of Nuclear Energy

Clean energy source.

Nuclear is the largest source of clean power in the United States. It generates nearly 775 billion kilowatthours of electricity each year and produces nearly half of the nation’s emissions-free electricity. This avoids more than 471 million metric tons of carbon each year, which is the equivalent of removing 100 million cars off of the road.

Creates Jobs

The nuclear industry supports nearly half a million jobs in the United States. Domestic nuclear power plants can employ up to 800 workers with salaries that are 50% higher than those of other generation sources. They also contribute billions of dollars annually to local economies through federal and state tax revenues.

Supports National Security

A strong civilian nuclear sector is essential to U.S. national security and energy diplomacy. The United States must maintain its global leadership in this arena to influence the peaceful use of nuclear technologies. The U.S. government works with countries in this capacity to build relationships and develop new opportunities for the nation’s nuclear technologies.

Challenges of Nuclear Energy

Public awareness.

Commercial nuclear power is sometimes viewed by the general public as a dangerous or unstable process. This perception is often based on three global nuclear accidents, its false association with nuclear weapons, and how it is portrayed on popular television shows and films.

DOE and its national labs are working with industry to develop new reactors and fuels that will increase the overall performance of these technologies and reduce the amount of nuclear waste that is produced.  

DOE also works to provide accurate, fact-based information about nuclear energy through its social media and STEM outreach efforts to educate the public on the benefits of nuclear energy.

Used Fuel Transportation, Storage and Disposal

Many people view used fuel as a growing problem and are apprehensive about its transportation, storage, and disposal. DOE is responsible for the eventual disposal and associated transport of all used fuel , most of which is currently securely stored at more than 70 sites in 35 states. For the foreseeable future, this fuel can safely remain at these facilities until a permanent disposal solution is determined by Congress.

DOE is currently evaluating nuclear power plant sites and nearby transportation infrastructure to support the eventual transport of used fuel away from these sites.

Subject to appropriations, the Department is moving forward on a government-owned consolidated interim storage facility project that includes rail transportation . 

The location of the storage facility would be selected through DOE's consent-based siting process that puts communities at the forefront and would ultimately reduce the number of locations where commercial spent nuclear fuel is stored in the United States.  

Constructing New Power Plants

Building a nuclear power plant can be discouraging for stakeholders. Conventional reactor designs are considered multi-billion dollar infrastructure projects. High capital costs, licensing and regulation approvals, coupled with long lead times and construction delays, have also deterred public interest.

microreactor_SMR image

Microreactor (left) - Small Modular Reactor (right)

DOE is rebuilding its nuclear workforce by  supporting the construction  of two new reactors at Plant Vogtle in Waynesboro, Georgia. The units are the first new reactors to begin construction in the United States in more than 30 years. The expansion project supported up to 9,000 workers at peak construction and created 800 permanent jobs at the facility when the units came online in 2023 and 2024.

DOE is also supporting the development of smaller reactor designs, such as  microreactors  and  small modular reactors , that will offer even more flexibility in size and power capacity to the customer. These factory-built systems are expected to dramatically reduce construction timelines and will make nuclear more affordable to build and operate.

High Operating Costs

Challenging market conditions have left the nuclear industry struggling to compete. DOE’s  Light Water Reactor Sustainability (LWRS) program  is working to overcome these economic challenges by modernizing plant systems to reduce operation and maintenance costs, while improving performance. In addition to its materials research that supports the long-term operation of the nation’s fleet of reactors, the program is also looking to diversify plant products through non-electric applications such as water desalination and  hydrogen production .

To further improve operating costs. DOE is also working with industry to develop new fuels and cladding known as  accident tolerant fuels . These new fuels could increase plant performance, allowing for longer response times and will produce less waste. Accident tolerant fuels could gain widespread use by 2025.

*Update June 2024

  • Phone: +91 8466016171
  • Whatsapp: +91 8208375580
  • Email: contact@leapscholar.com

Nuclear Power Essay IELTS 2024: Writing Task 2 Latest Samples

  • Last Updated On July 29, 2024
  • Published In IELTS Preparation 💻

nuclear power essay ielts

The IELTS exam tests how well-versed you are in the English language. It consists of four papers: reading, writing, listening, and speaking. Essay writing can be daunting if you’re not conversant in its framework and concept. This blog will assist you in writing Nuclear Power Essay IELTS and guide you on how to crack IELTS writing task 2.

Table of Content

We’ll focus more on the nuclear power essay during this blog and walk you through the process. For guidance and reference on other topics and any other help regarding the IELTS exam, you can look through our website’s collection of blogs and obtain the assistance you need, including writing task 2 topics with answers .

ielts

Excel in IELTS with India’s Top Online Coaching

Leap has helped more than 1 Lakh students achieve 7+ IELTS band.

nuclear power essay ielts

Nuclear Power Essay IELTS Sample Answer

Nuclear power is a very debated topic in every convention and has always been questioned for the bad it does rather than its good. In my opinion, nuclear power needs to be used, and the user should also be controlled and hedged with renewable energy sources as they are the only viable solution. Nuclear plants currently provide 11% of the world’s electricity. With an ever-increasing demand for electricity being seen everywhere and the fossil fuels reducing each day, it is now more important than ever that major decisions should be made. In the upcoming decades, energy consumption will only increase and meet the rising demand; nuclear power plants will be required as they are the best source of traditional energy-producing sources. Although nuclear power plants are required, it is also necessary to gradually push renewable energy sources and promote them to create a sustainable future for future generations. Nuclear power plants’ waste disposal and radioactivity are the concerning factors that have been the hot topic of most debates at conventions and meetings. In addition to that, a single misuse of this tremendous power can result in the disruption of life for all mankind. Striking a balance between the two will be crucial in the coming time as global warming and the energy crisis are on a constant rise. If nothing is done in the near time, countries could get submerged underwater within the coming decades, and the entire world will have to fight for survival.

Writing Task 2

The writing section of the IELTS exam consists of two sections. Writing task 2 is an essay writing task that requires deep thinking and coherence. This task will be our focus for this blog, as the rules and guidelines of the IELTS exam can be confusing for students appearing for the first time. Writing task 2 has the subsequent guidelines:

  • The essay should have a minimum of 250 words. An essay written in less than 250 words will be penalised and negatively marked. There is no penalty for writing a longer essay, but it will cause you to stray off-topic and waste time.
  • 40 minutes is a good enough time to complete this task and will leave you with time to recheck your answer.
  • The essay’s contents should be written with perfect grammar and solely focused on the topic.
  • You can be penalised if you stray off-topic while writing your essay. All the sentences must be related and formed to provide a clear view and information.
  • The content must be well structured to fetch the best results and have proper cohesion between the sentences.
  • The tone of your answer must be academic or semi-formal and should discuss the given topic at length and focus on proper and sophisticated language.
  • Using bullet points and notes is not allowed in the IELTS exam . The real answer must be written together and broken into paragraphs to better examine your writing style and structure.

Nuclear Power Essay IELTS 2024: Writing Task 2 Latest Samples

Consult IELTS Expert for a Free Personalised Learning Plan

Improve your IELTS speaking score with a 1:1 consultation.

Structure of Essay in Writing Task 2

The structure of the essay in writing task 2 is the base of your essay, and a clear idea of the structure will make it much easier for you to finish the essay on time. The structure of the essay can be broken down in the following way:

  • First Paragraph
  • Second Paragraph
  • Third Paragraph
  • Fourth Paragraph

The first paragraph of your essay should provide a small introduction to the topic and provide an opinion of yours about what side you are on about the topic. The first paragraph should be minimal and to the point. A clear and concise introduction leaves a good impression on the examiner. The second paragraph should begin with your stance on the topic. The first sentence should provide clarity on your stance. The second sentence should build on that idea and delve deeper into the specifics. The next sentences are suitable for providing an example and developing it in detail. You can make up research studies and quote them in your essay to support your point. At the end of the paragraph, end with a statement that sums up the overall idea of the paragraph and supports the idea you started with. The third paragraph is very similar in structure to the second paragraph. The main objective of this paragraph is to provide either the opposite view of the topic or discuss new ideas that touch on a different perspective of the topic but ultimately support your opinion. The structuring is the same as in the second paragraph, with minute changes. The fourth paragraph is the conclusion of your essay and, just like the introduction, should be minimal. Summing up your essay with a statement supporting your opinion and overall idea is best advised.

Nuclear Power Essay IELTS

Score well on IELTS Nuclear Essay by understanding the Writing task 2 structure above. Add Brownie points for writing answers with facts, examples and evidence. For more related content, head on to LeapScholar blogs. Avail of one-on-one guidance from India’s top IELTS educators from the Leap Scholar Premium course.

Explore all countries

Frequently asked questions, 1. what are the pros and cons of nuclear power.

Ans: Nuclear energy is a widely used method of production of electricity. The benefits of nuclear technology and the main advantages of nuclear power are: a. No production of harmful gases that cause air pollution b. Clean source of energy c. Low cost of fuel d. Long-life once constructed e. A massive amount of energy produced f. Unlike most energy production methods, nuclear energy does not contribute to the increase in global warming

Disadvantages: a. Very high cost of construction of the facility. b. Waste produced is very toxic and requires proper and safe disposal, which is costly. c. If any accident happens, it can have a major impact on everyone and can be devastating. d. Mining of uranium 235, which is nuclear fuel, is very expensive.

2. Does Japan have a plan for dealing with its own nuclear waste problem?

Ans: As per the latest news and research, Japan does not have a proper nuclear waste dumping structure even after the Fukushima disaster in 2011. The Fukushima disaster was caused by the Tohoku earthquake and tsunami that hit Japan in 2011 and caused meltdowns and hydrogen explosions at the Fukushima Daiichi Nuclear Reactor. It was the worst recorded nuclear disaster since Chernobyl. Japan is said to have enough nuclear waste to create nuclear arsenals. In April 2021, Japan declared they would be dumping 1.2 million tonnes of nuclear waste into the sea. This is the same Japan that called the 1993 ocean dumping by Russia “extremely regrettable.” The discharges are bound to begin by 2023, and various legal proceedings and protests have been going on inside Japan against this inhuman decision that would destroy marine life.

3. How many countries have nuclear power plants?

Ans : Currently, 32 countries in the world possess nuclear power plants within their boundaries.

4. Why do people oppose nuclear power?

Ans: Opposition to nuclear power has been a long-standing issue. It is backed by a variety of reasons which are as follows:Nuclear waste is hard to dispose of, and improper disposal affects the radioactivity levels and can disrupt the normal life of people as well as animals. Nuclear technology is another concern of people as the usage of nuclear power plants leads to deeper research into the nuclear field. In today’s world, anything can be weaponised, and the threat of nuclear weapons is one of the drawbacks of nuclear power. This brings the threat of nuclear war and disruption of world peace. Any attack on nuclear power plants by terrorist organisations can result in a massive explosion that can disrupt and destroy human life and increase radioactivity to alarming levels around the site of the explosion.

5. What is the best way to dispose of nuclear waste?

Ans: Nuclear waste needs to be disposed of properly to prevent radioactive issues in the environment. The best methods to dispose of nuclear waste are as follows: a. Incineration : Radioactive waste can be incinerated in large scale incinerators with low production of waste. b. Deep burial: Nuclear waste can be buried deep into the ground as the radioactivity of nuclear waste wears off over time. This method is used for waste that is highly radioactive and will take a longer time to lose its radioactivity. c. Storage: Nuclear waste with low radioactivity is stored by some countries in storage. This is because their radioactive decay takes lesser time and can be disposed of safely once the radiation wears off.

6. Is it possible to produce electricity without using fossil fuels?

Ans: At the moment, 11% of the world’s electricity is produced by nuclear power plants alone. Replacing fossil fuel-based energy with renewable needs to be done gradually and properly. Renewable energy sources such as solar, hydro, and wind will have to be promoted and pushed to create a sustainable future. Renewable energy sources provide cheap energy, do not use up natural resources and fossil fuels and are much cheaper to construct than a nuclear power station.

Know More about IELTS

Ielts practice test material.

Know more about IELTS

Get free speaking practice samples.

  • Describe a Skill That you can teach other people
  • Describe a Place you Visited Where the Air was Polluted
  • Describe a Famous Person that you are Interested in
  • Describe a Course That You Want to Learn
  • Describe a Person who Solved a Problem in Smart Way
  • Describe a Prize That You Received
  • Describe a Volunteering Experience You Have Had
  • Describe a Piece of Good News
  • Describe Something you Taught to Your Friend
  • Talk About an Interesting Old Person you Met Recently
  • Describe a Dinner you Really Enjoyed
  • Describe a Story or Novel That Was Interesting to You
  • Describe a Time When you Shared Something with Others
  • Describe a Toy you Liked in Childhood
  • Describe an Interesting Neighbour
  • Describe a Competition You Would Like to Take Part In
  • Describe an interesting activity that you remember enjoying most in your Primary School
  • Describe Your Childhood Friend
  • Describe an Object You Find Particularly Beautiful
  • Describe a Place Where you are Able to Relax
  • Describe a person you know who likes to talk a lot
  • Describe a place where you would like to go to relax
  • Describe a period when you were busy
  • Describe a long-term goal you would like to achieve
  • Describe a situation when you helped someone
  • Describe a job you would not like to do in the future
  • Describe a time when you used a map
  • Describe a skill that you learned in your childhood
  • Describe an unusual holiday you had
  • Describe an exciting activity that you experienced with someone else
  • Describe a person who is good at making people feel welcome in his/her home
  • Describe A Time You Successfully Did Something Difficult
  • Describe Something in Your Country That You Are Interested In
  • Describe a Beautiful City
  • Describe something you do regularly that helps you work and study better
  • Describe a photo that you took and are proud of
  • Describe a party that you enjoyed
  • Describe a useful object in your home that you can’t live without
  • Describe a good advertisement that you think is useful
  • Describe an occasion when someone or something made noise
  • Describe a sportsperson that you admire
  • Describe something that you picked up that was thrown by someone else
  • Describe a time that something changed your life in good ways
  • Describe a successful person who you once studied or worked with

Get Free Reading Practice Samples

  • William henry perkin reading answers
  • Why zoos are good reading answers
  • Bioluminescence reading answers
  • Classifying societies reading answers
  • Artificial artists reading answers
  • Jargon reading answers
  • The Origins of Laughter Reading Answers
  • The Innovation of Grocery Stores Reading Answers
  • All About the Otter Reading Answers
  • The Triune Brain Reading Answers
  • Saving the Soil Reading Answers
  • Trans Fatty Acids Reading Answers
  • A Disaster of Titanic Proportions Reading Answers
  • Why Companies Should Welcome Disorder Reading Answers
  • Book Review Reading Answers
  • Tea Times Reading Answers
  • Why are Finland's Schools Successful Reading Answers
  • Intelligence and Giftedness Reading Answers
  • Animal Minds Parrot Alex Reading Answers
  • Crop Growing Skyscrapers Reading Answers
  • Secrets of the Swarm Reading Answers
  • Walking with Dinosaurs Reading Answers
  • The Development of Travel Under the Ocean Reading Answers
  • What's so Funny Reading Answers
  • The Culture of Chimpanzee Reading Answers
  • Clutter Bugs Beware Reading Answer
  • Stepwells Reading Answers
  • Glaciers Reading Answers

Get Free Writing Practice Samples

  • Advantages and Disadvantages Essay with Sample Answers
  • Agree and Disagree Essay with Sample Answers
  • Problem Solution Essay Topic with Sample Answers
  • Every year several languages die out
  • Positive or Negative Development Essay with Sample Answers
  • Honesty is the best policy essay
  • Online shopping essay
  • Environment essay topics
  • Prevention is better than cure essay

Get Free Listening Practice Samples

  • Family excursions listening answers
  • Public library listening answers
  • Hiring a public room listening answers
  • Notes on social programme listening answers
  • Accommodation request form listening answers
  • Transport survey listening answers
  • Mic house agency repairs listening answers
  • Holiday rentals listening answer
  • Job enquiry listening answers
  • Homestay application listening answers
  • Library information listening answers
  • Free activities in the burnham area listening answers

IELTS Important Information

  • IELTS Exam Date
  • IELTS Exam Fee
  • IELTS Modules
  • IELTS Speaking Practice Test
  • IELTS Writing Practice Test
  • IELTS Reading Practice Test
  • IELTS Listening Practice Test
  • IELTS Test Centres
  • IELTS Results
  • Types of IELTS
  • IELTS Pattern
  • IELTS Exam Eligibilty
  • IELTS Slot Booking
  • IELTS Band Score
  • IELTS Registration
  • IELTS Books
  • IELTS Preparation
  • IELTS Practice Test
  • IELTS Speaking Cue Card
  • IELTS Speaking Part 1
  • IELTS Writing Task 1
  • IELTS Writing Task 2
  • Task 1 Pie Chart
  • Task 1 Table Chart
  • Task 1 Bar Graph
  • Task 1 Line Graph
  • Task 1 Diagram
  • IELTS Computer Based Test
  • IELTS Paper Based Test
  • IELTS One Skill Retake
  • IELTS for UKVI
  • IELTS Vocabulary

IELTS Test Centre and Dates in India

  • IELTS Test Centre and Dates in Hyderabad
  • IELTS Test Centre and Dates in Bangalore
  • IELTS Test Centre and Dates in Chennai
  • IELTS Test Centre and Dates in Amritsar
  • IELTS Centre and Dates in Ludhiana
  • IELTS Test Centre and Dates in Mumbai
  • IELTS Test Centres and Dates in Ahmedabad
  • IELTS Centre and Dates in Delhi
  • IELTS Test Centres and Dates in Chandigarh
  • IELTS Center and Dates in Pune

IELTS Coaching

  • IELTS coaching in Chandigarh
  • IELTS coaching in Chennai
  • IELTS coaching in Hyderabad
  • IELTS coaching in Ahmedabad
  • IELTS coaching in Dehradun
  • IELTS coaching in Bangalore
  • IELTS coaching in Jaipur
  • IELTS coaching in Laxmi Nagar
  • IELTS coaching in Coimbatore
  • IELTS coaching in Trivandrum
  • IELTS coaching in Gurgaon

Avatar photo

Ishika Maheshwari

Hi there! I'm Ishika Maheshwari, your go-to expert for acing exams like IELTS, TOEFL, and Duolingo. I simplify complex topics to help you achieve high scores. When I'm not sharing tips and strategies, I create engaging and informative content. Let's succeed together!

personality vocabulary ielts

Personality Vocabulary IELTS: About People & Personalities

ielts general academic

IELTS Academic or General: Which is the Easiest Test?

IELTS Connectors

IELTS Connectors and Linking Words for 2024

cefr guide

CEFR Levels In IELTS: 2024 Guide to CEFR Levels For Language Proficiency Tests

Love this blog share the love, boost your ielts writing score.

essay on nuclear power

Learn how to prepare for IELTS

  • 2L+ Leap students sent abroad
  • 2L+ students scored 7+ bands

Have Questions? Get Guidance to reach your Dream University

Connect with India's finest counsellors and biggest study abroad community.

Related Blogs

essay on nuclear power

Affordable MBA Abroad for Indian Students in 2024-2025

  • August 24, 2024
  • 12 min read

Virendra Kumar Dhall Scholarship for Sporting Excellence, Loughborough University, UK

Virendra Kumar Dhall Scholarship for Sporting Excellence, Loughborough University, UK

  • August 23, 2024

essay on nuclear power

Top GMAT-Accepting Colleges in the World for MBA

essay on nuclear power

SOP for PG Diploma in Canada: Structure, Format and Tips

gre vs ielts

GRE vs IELTS: Difference & Which is Better and Easier

  • 13 min read

1 Year Diploma Courses in New Zealand

1 Year Diploma Courses in New Zealand for International Students

Popular blogs.

pre masters in uk

Pre Masters In UK – Top 8 Course Details & Universities

  • May 10, 2022
  • 12 Min Read

msc microbiology in uk

MSc in Microbiology in UK: Admission, Fees, Universities & Course Details

  • May 2, 2022
  • 17 Min Read

masters in education uk

Masters in Education in UK: Universities & Course Details

  • April 26, 2022
  • 10 Min Read

ms in robotics in usa

Masters In Robotics In USA: Universities & Course details

  • March 15, 2022
  • 11 Min Read

ms in mechanical engineering in usa

MS in Mechanical Engineering in USA: Universities & Course Details

  • March 10, 2022
  • 13 Min Read

PTE reading tips and tricks

PTE Reading Tips and Tricks to Improve your PTE Reading Score

  • August 20, 2024

essay on nuclear power

Crack IELTS with

7+ bands in 4 weeks.

essay on nuclear power

Get Guidance to reach your

Dream university.

  • Student Opportunities

About Hoover

Located on the campus of Stanford University and in Washington, DC, the Hoover Institution is the nation’s preeminent research center dedicated to generating policy ideas that promote economic prosperity, national security, and democratic governance. 

  • The Hoover Story
  • Hoover Timeline & History
  • Mission Statement
  • Vision of the Institution Today
  • Key Focus Areas
  • About our Fellows
  • Research Programs
  • Annual Reports
  • Hoover in DC
  • Fellowship Opportunities
  • Visit Hoover
  • David and Joan Traitel Building & Rental Information
  • Newsletter Subscriptions
  • Connect With Us

Hoover scholars form the Institution’s core and create breakthrough ideas aligned with our mission and ideals. What sets Hoover apart from all other policy organizations is its status as a center of scholarly excellence, its locus as a forum of scholarly discussion of public policy, and its ability to bring the conclusions of this scholarship to a public audience.

  • Peter Berkowitz
  • Ross Levine
  • Michael McFaul
  • Timothy Garton Ash
  • China's Global Sharp Power Project
  • Economic Policy Group
  • History Working Group
  • Hoover Education Success Initiative
  • National Security Task Force
  • National Security, Technology & Law Working Group
  • Middle East and the Islamic World Working Group
  • Military History/Contemporary Conflict Working Group
  • Renewing Indigenous Economies Project
  • State & Local Governance
  • Strengthening US-India Relations
  • Technology, Economics, and Governance Working Group
  • Taiwan in the Indo-Pacific Region

Books by Hoover Fellows

Books by Hoover Fellows

Economics Working Papers

Economics Working Papers

Hoover Education Success Initiative | The Papers

Hoover Education Success Initiative

  • Hoover Fellows Program
  • National Fellows Program
  • Student Fellowship Program
  • Veteran Fellowship Program
  • Congressional Fellowship Program
  • Media Fellowship Program
  • Silas Palmer Fellowship
  • Economic Fellowship Program

Throughout our over one-hundred-year history, our work has directly led to policies that have produced greater freedom, democracy, and opportunity in the United States and the world.

  • Determining America’s Role in the World
  • Answering Challenges to Advanced Economies
  • Empowering State and Local Governance
  • Revitalizing History
  • Confronting and Competing with China
  • Revitalizing American Institutions
  • Reforming K-12 Education
  • Understanding Public Opinion
  • Understanding the Effects of Technology on Economics and Governance
  • Energy & Environment
  • Health Care
  • Immigration
  • International Affairs
  • Key Countries / Regions
  • Law & Policy
  • Politics & Public Opinion
  • Science & Technology
  • Security & Defense
  • State & Local
  • Books by Fellows
  • Published Works by Fellows
  • Working Papers
  • Congressional Testimony
  • Hoover Press
  • PERIODICALS
  • The Caravan
  • China's Global Sharp Power
  • Economic Policy
  • History Lab
  • Hoover Education
  • Global Policy & Strategy
  • Middle East and the Islamic World
  • Military History & Contemporary Conflict
  • Renewing Indigenous Economies
  • State and Local Governance
  • Technology, Economics, and Governance

Hoover scholars offer analysis of current policy challenges and provide solutions on how America can advance freedom, peace, and prosperity.

  • China Global Sharp Power Weekly Alert
  • Email newsletters
  • Hoover Daily Report
  • Subscription to Email Alerts
  • Periodicals
  • California on Your Mind
  • Defining Ideas
  • Hoover Digest
  • Video Series
  • Uncommon Knowledge
  • Battlegrounds
  • GoodFellows
  • Hoover Events
  • Capital Conversations
  • Hoover Book Club
  • AUDIO PODCASTS
  • Matters of Policy & Politics
  • Economics, Applied
  • Free Speech Unmuted
  • Secrets of Statecraft
  • Capitalism and Freedom in the 21st Century
  • Libertarian
  • Library & Archives

Support Hoover

Learn more about joining the community of supporters and scholars working together to advance Hoover’s mission and values.

pic

What is MyHoover?

MyHoover delivers a personalized experience at  Hoover.org . In a few easy steps, create an account and receive the most recent analysis from Hoover fellows tailored to your specific policy interests.

Watch this video for an overview of MyHoover.

Log In to MyHoover

google_icon

Forgot Password

Don't have an account? Sign up

Have questions? Contact us

  • Support the Mission of the Hoover Institution
  • Subscribe to the Hoover Daily Report
  • Follow Hoover on Social Media

Make a Gift

Your gift helps advance ideas that promote a free society.

  • About Hoover Institution
  • Meet Our Fellows
  • Focus Areas
  • Research Teams
  • Library & Archives

Library & archives

Events, news & press.

defining idea

The Benefits Of Nuclear Power

It won’t solve our energy problems, but our energy problems can’t be solved without it.

Image

The following essay is excerpted from the foreword to Keeping the Lights on at America's Nuclear Power Plants , a new book from the Hoover Institution’s Shultz-Stephenson Task Force on Energy Policy. This work is part of the task force’s Reinventing Nuclear Power research series.

Nuclear power alone will not solve our energy problems. But we do not think they can be solved without it. This is the crux of our concerns and why we are offering this book. It describes the challenges nuclear power is facing today and what might be done about them.

One of us, between other jobs, built nuclear plants for a living; between other jobs, the other helped make them safer. In many respects, this is a personal topic for us both. But here are some facts:

We know that our country’s dominance in civilian nuclear power has been a key part of America’s ability to set norms and rules not just for power plants in less stable places around the world but also for the control of nuclear weapon proliferation. We know that it’s an important technology-intensive export industry too: America invented the technology, and the United States today remains the world’s largest nuclear power generator, with nearly a quarter of global plants (more if you count the hundred power reactors aboard our navy ships at sea). Domestically, we know that nuclear power gives us reliable electricity supply at scale, supplying one-fifth of all of our power production and that nearly two- thirds of our country’s pollution and carbon-dioxide-free energy comes from these facilities.

There are known risks and real costs to nuclear too, of course, but on balance we believe that the benefits for the country come out well ahead. Historically, much of the national nuclear enterprise has rested on the backs of the US federal government (and military) as well as on the ratepayers of the electric utilities who own or operate these facilities. The question today is if—and how—those same players will be able to shoulder that responsibility in the future.

When we first started looking into the nuclear question as part of our energy work at the Hoover Institution a few years ago through the Shultz-Stephenson Task Force on Energy Policy, we had our eyes toward the future: What were the prospects and roadblocks for a new generation of small, modular nuclear reactors? How about the licensing framework for advanced, next-generation plant designs? Could a new entrepreneurial portfolio approach help break through the nuclear fusion barrier? We wanted to know what it would take to “reinvent nuclear power.” Soon enough, though, it became clear that it would not be enough to reinvent the future of nuclear power; if we don’t want to make the commitment to finance and run the mature and already depreciated light water nuclear reactors of today effectively, we won’t have the option to make that choice tomorrow.

Nothing in energy happens in isolation, so nuclear power should be viewed in its larger context. In fact, we are in a new energy position in America today.

First, security. New supplies of oil and gas have come online throughout the country. This not only has reduced our imports but also given us the flexibility in our production that makes price fixing cartels such as OPEC weak.

Prices are falling too, not just in the well known oil and gas sectors, the result again of American ingenuity and relentless commercialization efforts in fracking and horizontal drilling, but in new energy technologies as well. Research and development in areas such as wind and solar or electric vehicles are driving down those costs faster than the scientists expected, though there is still substantial room to go. We also have made huge strides since the 1970s Arab oil crises in the more efficient—or thoughtful—use of energy and are in a much better position energy-wise financially and competitively because of it.

Meanwhile there is the environment. The good news is that we’ve already made a lot of progress. As anyone who experienced Los Angeles smog in the 1960s and 1970s can attest, the Clean Air Act has been huge for the air we breathe. On carbon dioxide emissions, the progress is mixed, but the influx of cheap natural gas, energy efficiency, and a growing menu of clean energy technologies suggest promise.

Our takeaway from all of this is that for perhaps the first time in modern history, we find ourselves with breathing room on the energy front. We are no longer simply struggling to keep the lights on or to keep from going broke while doing so. What will we then choose to do with that breathing room?

To put a finer point on it: America needs to ask itself if it’s acceptable to lose its nuclear power capability by the midpoint of this century. If so, then, plant by plant, our current road may take us there. Some would be happy with that result. Those that would not should understand that changing course is likely to require deliberate actions.

What would we be giving up if we forgot nuclear power?

An environmentalist might note that we’d be losing a technology that does not pollute the air or water. Radioactivity is a cultural and emotional concern for many people, but nuclear power produces a relatively small amount of such waste—at a predictable rate, with known characteristics, and with $30 billion in disposal costs already paid for. Perhaps surprisingly, nuclear power production actually releases one hundred times less radiation into the surrounding environment than does coal power. Overall, with a long track record, the rate of human injury caused by nuclear power production is the lowest of any power generation technology, including renewable resources.

Jobs are increasingly discussed in energy, as they have long been in other business policy. Nuclear power plants each employ about six hundred people, about ten times more than an equivalent natural gas plant. Many nuclear workers are midcareer military veterans with few other outlets for their specialized skills—one US nuclear utility reported last year that a third of all new hires at nuclear facilities were veterans, Often intentionally located in rural areas, nuclear plants are major economic inputs to sixty small towns and cities across America. The nuclear power technology and manufacturing supply chain is a global export business for domestic businesses—not just for multinationals but also closely held nuclear-rated component suppliers, forgers, and contractors.

Someone concerned with security can appreciate that the fuel for nuclear power plants can be provided entirely from friendly suppliers, with low price volatility, and long-term supplies stored on-site and not subject to weather disruptions. Existing nuclear power plants use mature technologies with a long experience of domestic expertise in operations, oversight, and regulation. More broadly, a well-functioning domestic civil nuclear “ecosystem” is intertwined with our space and military nuclear capabilities, such as the reactors that power our aircraft carriers and submarines.

Finally, we shouldn’t discount that nuclear power plants are today being built at an unprecedented rate by developing countries in Asia and the Middle East, driven by power demands for their growing industries and increasingly wealthy populations. Those new plants are as likely to be built and supplied by international competitors as they are our own domestic businesses and their employees. The United States has so far held a dominant position in preserving global safety and proliferation norms owing to the strength of our domestic nuclear capabilities. Looking forward, new nuclear power technologies are available that could improve plants’ performance and the affordability of the power they generate. But tomorrow’s nuclear technologies directly depend on a continuation of today’s nuclear workforce and know-how.

In today’s American energy system, our biggest challenges are now human, not machine. Nuclear power illustrates this: while these generators have sat producing a steady stream of electrons, year by year, the country and markets have shifted around them. As long as we keep the gas pedal down on energy research and development—which is important for the long term—our country’s universities and research labs will ensure that new technologies keep coming down the pipeline as fast as we can use them. Often what is holding us back now is a lack of strategy and the willingness to make the political and bureaucratic changes necessary to carry one out. Technology and markets are moving faster than governments.

Nuclear power operators after Chernobyl and Three Mile Island were famously described as being “hostages of each other.” Any mistake made by one would reflect on all of the others. In many ways, this was an opportunity that became the basis for the American operators’ effective program of industry self-regulation. Today that phrase may have a new meaning. In recent years, the country’s energy industry has become unfortunately politicized, with many of the same sorts of identity- and values-based appeals that have come to dominate our political campaigns.

Technologies or techniques are singled out for tribal attack or support, limited by a zero-sum mindset. In truth, the energy system is not something that can be won. Instead, it’s more like gardening: something that you have to keep working at and tending to. Fans of gas or nuclear, electric cars or oil exports, fracking or rooftop solar—in the end, all are linked by common markets and governments. Each shot red in anger ricochets through the system, sometimes with unexpected consequences. This is why, for example, we support a revenue-neutral carbon tax combined with a rollback of other technology-specific mandates, taxes, and subsidies that would go a long way toward leveling the playing field. Ultimately, a balanced and responsive approach that acknowledges the real trade-offs between affordability, reliability, social impacts, environmental performance, and global objectives is the best strategy for reaching—and maintaining over time—any one of those energy goals. Our energy system has more jobs than one.

So while we find ourselves with breathing room today, we know that the path ahead is filled with uncertainty. The unforeseen developments that have delivered us to this point today could once again carry us to an unexpected situation tomorrow. Renewable resource costs have fallen faster than expected—can that pace be maintained as systems pass from plug-and-play at the margins to unexplored territory on the widespread integration or even centrality of intermittent generation? Natural gas has seen a boon throughout the country—how comfortable are we in betting the future on its continued low cost ubiquity? Coal has always been available alongside nuclear on the grid as a reliable base-load backstop—can we take for granted that it will survive a new regulatory environment through a series of technological miracles? Taking control of the grid through the large-scale storage of power would revolutionize our relationship with electricity and should be relentlessly pursued—but what if our technology can not deliver by the time we need it?

We are optimists about our country’s energy future. We are also realists. This book is about the nuclear situation today. But it is a mistake to compare the known challenges of the present with the pristine potential of the new. If one was to describe a new power-generating technology with almost no pollution, practically limitless fuel supplies, reliable operations, scalable, and statistically far safer than existing alternatives, it would understandably sound like a miracle. Our energy needs would be solved. No wonder the early America advocates of nuclear fission were so excited. Experienced reality is always more complicated, of course. We should bring to bear this country’s best minds and technologies to navigate that process responsibly. We have been through a roller coaster on energy in this country that is not likely to stop. New challenges will emerge, as will new opportunities.

It is far too early to take nuclear off the table. 

View the discussion thread.

footer

Join the Hoover Institution’s community of supporters in ideas advancing freedom.

 alt=

  • Share full article

Advertisement

Supported by

Nuclear Power as a Clean Energy Tool?

More from our inbox:.

  • Quality at Boeing
  • A Bathroom Sign
  • Running, Fast and Slow

A photo of two cooling towers at a decommissioned nuclear plant in California, surrounded by vineyards.

To the Editor:

Re “ Reviving Nuclear Energy Is a Fantasy ,” by Stephanie Cooke (Opinion guest essay, April 24):

Meeting the climate crisis and achieving net zero by 2050 without nuclear energy is a fantasy. The reality is that the United States must deploy every tool at its disposal to reach our clean energy goals.

Nuclear power has delivered clean energy for over half a century. It also provides nearly half of the United States’ clean energy today. A resurgence in global, bipartisan support illustrates that nuclear energy’s vital signs are as strong as ever.

Recent commitments made at the U.N. Climate Change Conference and the International Atomic Energy Agency Summit show that world leaders recognize we’ve only begun to see nuclear power’s potential to complement renewable energy sources in the race to net zero.

Here at home, the Inflation Reduction Act’s investment in the existing fleet is a vote of confidence, and state legislatures have considered about 330 nuclear-energy-related bills since 2023.

During my time as E.P.A. administrator, I focused on developing sustainable solutions to protect our air, land and water. As my perspective on nuclear energy evolved, so did my understanding that we cannot take any clean energy sources off the table.

It is our responsibility to live in the real world and pursue all climate solutions, including nuclear energy.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

NASA Logo

Perseverance Pays Off for Student Challenge Winners

Thre children, a boy and two girls, sit on a model rock formation.

As radioisotopes power the Perseverance rover to explore Mars, perseverance “powered” three winners to write essays each year till they achieved their mission goal of winning NASA’s Power to Explore Challenge . These students explored behind the scenes at NASA's Glenn Research Center and Great Lakes Science Center (GLSC) in Cleveland after writing the top essays in the national contest.

The competition for kindergarten through 12th grade students focuses on the enabling power of radioisotopes. Students were challenged to learn how NASA has powered some of its most famous science missions and to dream up how their personal “superpower” would energize their own radioisotope-powered science mission.

Judges narrowed down over a seventeen hundred creative essays to 45 semi-finalists, who received prize packs, nine finalists, who participated in a videoconference with NASA experts, and three winners, who were awarded with a visit to NASA Glenn.

“I’m so impressed by the work of these talented young students. It’s wonderful to see their interest, innovation, and creativity at this stage in their lives. Our future is bright!

Dr. Wanda Peters

Dr. Wanda Peters

Acting Deputy Director, NASA's Glenn Research Center

“I’m so impressed by the work of these talented young students,” said Dr. Wanda Peters, acting deputy center director at NASA Glenn. “It’s wonderful to see their interest, innovation, and creativity at this stage in their lives. Our future is bright!”

Rainie Lin , the kindergarten through fourth grade winner; Aadya Karthik , the fifth through eighth grade winner, and Thomas Liu , the ninth through 12th grade winner, toured several research facilities including the Electric Propulsion and Power Laboratory , Telescience Support Center , Graphics and Visualization Lab , and Simulated Lunar Operations Lab . Along the way, they met with engineers and researchers to learn about NASA’s missions and the technologies that are innovating exploration.

The next day students and their families traveled to GLSC, which houses NASA Glenn’s Visitor Center. Accompanied by members of NASA’s Radioisotope Power Systems (RPS) team, the group toured the visitor center and explored the many interactive displays.

“It was our pleasure to host the three student winners of The Power to Explore Challenge, and I hope that this visit will further inspire and motivate them to pursue their interests in science and exploration,” said Carl Sandifer, manager for NASA’s RPS Program. "We are so impressed by the ideas and quality of the essays submitted this year and we can’t wait to what new ideas student come up with for next year’s challenge!”

The Power to Explore Challenge asked students to learn about the RPS, one of NASA’s “nuclear batteries” it uses to explore some of the most extreme destinations in our solar system and beyond. Students then wrote about their own power to achieve goals in 250 words or less.

NASA will hold its fourth-annual Power to Explore Challenge later this fall. For more information on the challenge visit: The Power to Explore Writing Challenge homepage .

ABOUT THE CHALLENGE:

Power to Explore is a national essay challenge that asks students in grades K-12 to learn about Radioisotope Power Systems (RPS), a type of “nuclear battery” that NASA uses to explore some of the most extreme destinations in our solar system and beyond, and then write about, in 250 words or less, an RPS-powered space mission that would energize their space exploration dreams.

ABOUT FUTURE ENGINEERS:

Future Engineers hosts online contests and challenges for K-12 students. Previous challenges have helped produce historic achievements – from naming NASA’s Perseverance rover to manufacturing the first student-designed 3D print in space. All challenges are offered free for student and classroom participation. For more information, visit futureengineers.org . Follow Future Engineers on Twitter , Facebook , and Instagram .

Media Contact: Kristin Jansen Public Affairs Specialist Office of Communications NASA RPS Program Phone: 216-296-2203 Email: [email protected]

Discover More Topics From NASA

Radioisotope Power Systems

Two men work on a grand piano-sized spacecraft wrapped in a gold insulating blanket. A large cylinder, a radioisotope thermoelectric generator, sticks out of the side.

About Plutonium-238

Five engineers look intently at the upside-down Perseverance Rover. They are examining the rover's Radioisotope Thermoelectric Generator.

Radioisotope Power Systems Missions

Illustration of a gold spacecraft with a silver dish on the front floating in space

Radioisotope Power Systems Safety and Reliability

An astronaut casts a long shadow on the Moon as he photographs scientific equipment on the lunar surface.

Pros and Cons of Nuclear Power Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Introduction

Nuclear power pros, nuclear power cons, impacts of nuclear energy on the society, works cited.

Nuclear power in description is a contained nuclear fission that generates electricity and heat. Nuclear power plants provide about 6% of the world’s energy and 14% of electricity. Nuclear energy is neither green nor sustainable energy because of the life threatening aspect from its wastes and the nuclear plants themselves.

Another reason is that its only source of raw material is only available on earth. On the other hand, nuclear energy is a non-renewable energy because of the scarcity of its source fuel, uranium, which has an estimation of about 30 to 60 years before it becomes extinct (Florida State University 1).

Nuclear power has quite a number of pros associated with its use. The first pro of nuclear energy is that it emits little pollution to the environment. A power plant that uses coal emits more radiation than nuclear powered plant. Another pro of nuclear energy is that it is reliable.

Because of the fact that nuclear plants uses little fuel, their vulnerability to natural disasters or strikes is limited. The next pro is safety that nuclear energy provides. Safety is both a pro and a con, depending on what point of view one takes. Nevertheless, even though results from a reactor can be disastrous, prevention mechanisms for it work perfectly well with it. Another pro that is associated with nuclear energy is efficiency.

In considering the different economic viewpoints, nuclear energy offers the best solution in energy provision and is more advantageous. In addition, we have portability as the next pro of nuclear energy. A high amount of nuclear energy can be contained in a very small amount of volume. Lastly, the technology that nuclear energy adopts is readily available and does not require development before use (Time for change.org 1).

On the other hand, nuclear energy has a number of cons that are associated with its usage. First is the problem of radioactive waste, whereby nuclear energy waste from it is extremely dangerous and needs careful look-up.

The other con of nuclear energy is that of its waste storage. A good number of wastes from nuclear energy are radioactive even thousands of years later since they contain both radioactive and fissionable materials. These materials are removable through a process called reprocessing which is through clearing all the fissionable materials in the nuclear fuel.

The next con of nuclear energy is the occurrence of a meltdown. A meltdown can be the worst-case scenario that can ever occur in a nuclear energy plant because its effects are deadly. The effects of a meltdown are very huge with estimation that radioactive contamination can cover a distance of over a thousand miles in radius. The final downturn associated with nuclear energy is radiation. Radiation mostly is associated with effects such as cancer, mutation and radiation sickness (Green Energy, Inc. 1).

The society being an association that has people of diverse ideologies and faiths regarding the production and consumption of energy, and economic goods, to the good life and good society. Nuclear energy should serve social justice and quality of life rather than being looked upon as end in it.

The existence of technology is purposely for serving human needs; it can destroy people and human values, deliberately or by unintended consequences. Because of this, the technological processes are guided by values that require constant public scrutiny and discussion.

Nuclear energy has implications towards the political viewpoint in that a country might wish to take advantage of its nuclear weapons to gain control of others. This will deprive others of their democratic rights coexist within their territory without interference of intruders.

Legal impacts

In terms of the legal impacts of nuclear energy, there are regulations that gives rights to who or which organizations have the authority to own nuclear facilities. The legal implications also target what specific standards are set out for adequate protection and what risks are not acceptable.

From the above discussion, in comparing the pros and cons of nuclear energy, one can conclude that as much as nuclear energy has severe effects to people and environment it also has varied benefits. In my own viewpoint, I presume to counter with the cons rather than the pros. It is evident what devastating effect nuclear energy has on the environment and as much as it benefits the environment through low pollution, in case of an accident and there is a meltdown the whole environment will be wiped out.

In a moral standpoint, I believe that lives of people are more important than energy sources. In as much as we would wish to have the most reliable energy source, our lives is the most important than any other thing (Florida State University 1).

In conclusion, it is evident from the mentioned pros and cons that nuclear energy is not the all-time solution to any problem. One can argue that to the extreme it is much of a problem source that a solution. In an effort to getting a good life, withstanding the ethical and moral issues, we should always strive for sustaining our lives to the best way possible. Nevertheless, many of the social and ethical issues associated with emerging nuclear power require determinate, immediate, distinct, significant actions (Falk 1).

Falk, Jim. Global Fission: The Battle over Nuclear Power. Oxford: Oxford University Press, 1982. Print.

Florida State University. “Pros of Nuclear Power.” eng.fsu.edu . FSU, n.d. Web.

Green Energy, Inc. “Pros and Cons of Nuclear Power.” greenenergyhelpfiles.com . Green Energy, n.d. Web.

Time for change.org. “ Pros and cons of nuclear power ”. timeforchange.org. Time For Change, n.d. Web.

  • Dangers of Nuclear Power
  • Alternate processing methods for xrays(radiography)
  • Balanced Treatment of the Pros and Cons of Nuclear Energy
  • Social Change: Modern, and Postmodern Societies
  • Financial Crises and the Subprime Meltdown
  • How maglev trains work
  • Different Sources of Energy
  • Ballistics: Types of Bullets and Damage
  • Can you study paranormal scientifically?
  • The Path of Light
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2018, October 25). Pros and Cons of Nuclear Power. https://ivypanda.com/essays/pros-and-cons-of-nuclear-power/

"Pros and Cons of Nuclear Power." IvyPanda , 25 Oct. 2018, ivypanda.com/essays/pros-and-cons-of-nuclear-power/.

IvyPanda . (2018) 'Pros and Cons of Nuclear Power'. 25 October.

IvyPanda . 2018. "Pros and Cons of Nuclear Power." October 25, 2018. https://ivypanda.com/essays/pros-and-cons-of-nuclear-power/.

1. IvyPanda . "Pros and Cons of Nuclear Power." October 25, 2018. https://ivypanda.com/essays/pros-and-cons-of-nuclear-power/.

Bibliography

IvyPanda . "Pros and Cons of Nuclear Power." October 25, 2018. https://ivypanda.com/essays/pros-and-cons-of-nuclear-power/.

IMAGES

  1. Dangers and Hazards of Nuclear Power (300 Words)

    essay on nuclear power

  2. Write a short essay on Importance of Nuclear Energy

    essay on nuclear power

  3. Argumentative essay: Nuclear power needs to be phased out

    essay on nuclear power

  4. Nuclear Power Advantages And Disadvantages Essay Ielts

    essay on nuclear power

  5. Should we build more nuclear power stations? Free Essay Example

    essay on nuclear power

  6. ⚡ Nuclear power pros and cons essay. Nuclear Power Pros And Cons. 2022

    essay on nuclear power

COMMENTS

  1. 77 Nuclear Power Essay Topics & Samples

    77 Nuclear Power Essay Topics & Examples. Updated: Feb 29th, 2024. 7 min. If you're looking for nuclear power essay topics, you may be willing to discuss renewable energy sources, sustainable development, and climate change as well. With the paper titles collected by our team, you'll be able to explore all these issues!

  2. What is Nuclear Energy? The Science of Nuclear Power

    Learn how nuclear fission, fusion, uranium enrichment, nuclear waste and nuclear power plants work. The IAEA provides technical support and guidance for the safe and secure use of nuclear energy.

  3. Nuclear Energy

    Nuclear energy is the energy in the nucleus, or core, of an atom. Atoms are tiny units that make up all matter in the universe, and energy is what holds the nucleus together. There is a huge amount of energy in an atom's dense nucleus.In fact, the power that holds the nucleus together is officially called the "strong force." Nuclear energy can be used to create electricity, but it must first ...

  4. Nuclear Power in a Clean Energy System

    Nuclear power is the second-largest source of low-carbon electricity today, with 452 operating reactors providing 2700 TWh of electricity in 2018, or 10% of global electricity supply. In advanced economies, nuclear has long been the largest source of low-carbon electricity, providing 18% of supply in 2018. Yet nuclear is quickly losing ground.

  5. Back to the future: Advanced nuclear energy and the battle against

    The accidents at Three Mile Island, Chernobyl, and Fukushima have imperiled nuclear power's rise worldwide. As Third Way's Josh Freed illuminates in the latest Brookings Essay, the Golden Age ...

  6. Nuclear power

    nuclear power, electricity generated by power plants that derive their heat from fission in a nuclear reactor. Except for the reactor, which plays the role of a boiler in a fossil-fuel power plant, a nuclear power plant is similar to a large coal-fired power plant, with pumps, valves, steam generators, turbines, electric generators, condensers ...

  7. Nuclear Power Advantages and Disadvantages Essay

    Introduction. Nuclear power is the energy generated by use of Uranium. The energy is produced via complex chemical processes in the nuclear power stations. Major chemical reactions that involve the splitting of atom's nucleus take place in the reactors. This process is known as fission (Klug and Davies 31-32).

  8. Nuclear energy facts and information

    Nuclear energy's future as an electricity source may depend on scientists' ability to make it cheaper and safer. Nuclear power is generated by splitting atoms to release the energy held at the ...

  9. PDF The History of Nuclear Energy

    A major goal of nuclear research in the mid-1950s was to show that nuclear energy could produce electricity for commercial use. The first commercial electricity-generating plant powered by nuclear energy was located in Shippingport, Pennsylvania. It reached its full design power in 1957. Light-water reactors like Shippingport use ordinary water ...

  10. A fresh look at nuclear energy

    For example, the assumed height of Tsunami waves against Fukushima nuclear power plant #1 was 10 meters while over 14 meters Tsunami waves hit the power plant on March 11, 2011. About nuclear energy, we still have two unsolved problems from the technology and engineering viewpoint: nuclear decommissioning and how to manage nuclear wastes.

  11. Essay on Nuclear Energy in 500+ words for School Students

    1. Radioactive Waste. One of the most important challenges that is associated with nuclear energy is the management and disposal of radioactive waste. Nuclear power gives rise to spent fuel and other radioactive byproducts that require secure, long-term storage solutions. 2.

  12. Why Nuclear Power Must Be Part of the Energy Solution

    In the early 1950s, when the U.S. Atomic Energy Commission believed high-grade uranium ores to be in short supply domestically, it considered extracting uranium for nuclear weapons from the abundant U.S. supply of fly ash from coal burning. In 2007, China began exploring such extraction, drawing on a pile of some 5.3 million metric tons of brown-coal fly ash at Xiaolongtang in Yunnan.

  13. Nuclear power and climate change

    Nuclear power is a low-carbon source of energy. In 2018, nuclear power produced about 10 percent of the world's electricity. Together with the expanding renewable energy sources and fuel switching from coal to gas, higher nuclear power production contributed to the levelling of global CO 2 emissions at 33 gigatonnes in 2019 1/.Clearly, nuclear power - as a dispatchable low carbon source of ...

  14. Benefits and Disadvantages of Nuclear Energy

    Disadvantages of Nuclear Power. The hindrance in the growth of nuclear energy is due to many complex reasons, and a major component is the nuclear waste. The further implementations of nuclear power are limited because although nuclear energy does not produce CO 2 the way fossil fuels do, there is still a toxic byproduct produced from uranium ...

  15. The Advantages and Disadvantages of Nuclear Energy

    Since the first nuclear plant started operations in the 1950s, the world has been highly divided on nuclear as a source of energy. While it is a cleaner alternative to fossil fuels, this type of power is also associated with some of the world's most dangerous and deadliest weapons, not to mention nuclear disasters.The extremely high cost and lengthy process to build nuclear plants are ...

  16. Advantages and Challenges of Nuclear Energy

    Clean Energy Source. Nuclear is the largest source of clean power in the United States. It generates nearly 775 billion kilowatthours of electricity each year and produces nearly half of the nation's emissions-free electricity. This avoids more than 471 million metric tons of carbon each year, which is the equivalent of removing 100 million cars off of the road.

  17. Nuclear Power Essay IELTS 2024: IELTS Writing Task 2 Samples

    Nuclear Power Essay IELTS 2024: Writing Task 2 Latest Samples. The IELTS exam tests how well-versed you are in the English language. It consists of four papers: reading, writing, listening, and speaking. Essay writing can be daunting if you're not conversant in its framework and concept.

  18. Nuclear Power Essays: Examples, Topics, & Outlines

    Nuclear Power Nuclear power has the most advantages of any power source being considered for the future energy demands of the United States. Through fission, the energy produced by 1 kg of uranium-235 is equal to that produced by 2,700 tons of coal; for a million-kw nuclear power plant, only 30 tons of nuclear fuel is needed every year, while a ...

  19. Nuclear Power Provides Cheap and Clean Energy Argumentative Essay

    Nuclear power refers to the sustained nuclear fission to generate heat and electricity (Ojovan 34). About 6% of the world's energy is sourced from nuclear power. There has been a much heated debate going on for decades in regard to the use of nuclear energy. Get a custom essay on Nuclear Power Provides Cheap and Clean Energy.

  20. The Benefits Of Nuclear Power

    The following essay is excerpted from the foreword to Keeping the Lights on at America's Nuclear Power Plants, a new book from the Hoover Institution's Shultz-Stephenson Task Force on Energy Policy.This work is part of the task force's Reinventing Nuclear Power research series.. Nuclear power alone will not solve our energy problems.

  21. Nuclear Power as a Clean Energy Tool?

    Re " Reviving Nuclear Energy Is a Fantasy ," by Stephanie Cooke (Opinion guest essay, April 24): Meeting the climate crisis and achieving net zero by 2050 without nuclear energy is a fantasy ...

  22. Nuclear Power Essay

    Find essays on nuclear power and energy from various perspectives and sources. Learn about the benefits, challenges, and controversies of nuclear power plants, nuclear accidents, and nuclear waste.

  23. Perseverance Pays Off for Student Challenge Winners

    Power to Explore is a national essay challenge that asks students in grades K-12 to learn about Radioisotope Power Systems (RPS), a type of "nuclear battery" that NASA uses to explore some of the most extreme destinations in our solar system and beyond, and then write about, in 250 words or less, an RPS-powered space mission that would ...

  24. Pros and cons of nuclear power

    Nuclear power has quite a number of pros associated with its use. The first pro of nuclear energy is that it emits little pollution to the environment. A power plant that uses coal emits more radiation than nuclear powered plant. Another pro of nuclear energy is that it is reliable. Because of the fact that nuclear plants uses little fuel ...