Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 21 October 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

research design findings

What Is Research Design?

A Plain-Language Explainer (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Dissertation Coaching

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Research methodology webinar

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental .

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

Need a helping hand?

research design findings

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

Private Coaching

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

research design findings

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

Research Methodology Bootcamp

Learn More About Methodology

How To Choose A Tutor For Your Dissertation

How To Choose A Tutor For Your Dissertation

Hiring the right tutor for your dissertation or thesis can make the difference between passing and failing. Here’s what you need to consider.

5 Signs You Need A Dissertation Helper

5 Signs You Need A Dissertation Helper

Discover the 5 signs that suggest you need a dissertation helper to get unstuck, finish your degree and get your life back.

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Research Limitations 101: What You Need To Know

Research Limitations 101: What You Need To Know

Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

18 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

Rachael Opoku

This post is really helpful.

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Joreme

This post has been very useful to me. Confusing areas have been cleared

Esther Mwamba

This is very helpful and very useful!

Lilo_22

Wow! This post has an awful explanation. Appreciated.

Florence

Thanks This has been helpful

Emmanuel Micah

Micah on 29, September, 2024 this is really helpful

Martin Ogola

This article is on point. Very well articulated and simply to understand. thanks for pointing out the term has been used very loosely across the internet, and even within academia. This is why so many students find it difficult to explain their study design

Revocatus Lembeli Mganilwa

Thank you for these useful materials on how to designs the research

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

research design findings

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Oct 24, 2024 10:02 AM
  • URL: https://libguides.usc.edu/writingguide

research design findings

What Is a Research Design? | Definition, Types & Guide

research design findings

Introduction

Parts of a research design, types of research methodology in qualitative research, narrative research designs, phenomenological research designs, grounded theory research designs.

  • Ethnographic research designs

Case study research design

Important reminders when designing a research study.

A research design in qualitative research is a critical framework that guides the methodological approach to studying complex social phenomena. Qualitative research designs determine how data is collected, analyzed, and interpreted, ensuring that the research captures participants' nuanced and subjective perspectives. Research designs also recognize ethical considerations and involve informed consent, ensuring confidentiality, and handling sensitive topics with the utmost respect and care. These considerations are crucial in qualitative research and other contexts where participants may share personal or sensitive information. A research design should convey coherence as it is essential for producing high-quality qualitative research, often following a recursive and evolving process.

research design findings

Theoretical concepts and research question

The first step in creating a research design is identifying the main theoretical concepts. To identify these concepts, a researcher should ask which theoretical keywords are implicit in the investigation. The next step is to develop a research question using these theoretical concepts. This can be done by identifying the relationship of interest among the concepts that catch the focus of the investigation. The question should address aspects of the topic that need more knowledge, shed light on new information, and specify which aspects should be prioritized before others. This step is essential in identifying which participants to include or which data collection methods to use. Research questions also put into practice the conceptual framework and make the initial theoretical concepts more explicit. Once the research question has been established, the main objectives of the research can be specified. For example, these objectives may involve identifying shared experiences around a phenomenon or evaluating perceptions of a new treatment.

Methodology

After identifying the theoretical concepts, research question, and objectives, the next step is to determine the methodology that will be implemented. This is the lifeline of a research design and should be coherent with the objectives and questions of the study. The methodology will determine how data is collected, analyzed, and presented. Popular qualitative research methodologies include case studies, ethnography , grounded theory , phenomenology, and narrative research . Each methodology is tailored to specific research questions and facilitates the collection of rich, detailed data. For example, a narrative approach may focus on only one individual and their story, while phenomenology seeks to understand participants' lived common experiences. Qualitative research designs differ significantly from quantitative research, which often involves experimental research, correlational designs, or variance analysis to test hypotheses about relationships between two variables, a dependent variable and an independent variable while controlling for confounding variables.

research design findings

Literature review

After the methodology is identified, conducting a thorough literature review is integral to the research design. This review identifies gaps in knowledge, positioning the new study within the larger academic dialogue and underlining its contribution and relevance. Meta-analysis, a form of secondary research, can be particularly useful in synthesizing findings from multiple studies to provide a clear picture of the research landscape.

Data collection

The sampling method in qualitative research is designed to delve deeply into specific phenomena rather than to generalize findings across a broader population. The data collection methods—whether interviews, focus groups, observations, or document analysis—should align with the chosen methodology, ethical considerations, and other factors such as sample size. In some cases, repeated measures may be collected to observe changes over time.

Data analysis

Analysis in qualitative research typically involves methods such as coding and thematic analysis to distill patterns from the collected data. This process delineates how the research results will be systematically derived from the data. It is recommended that the researcher ensures that the final interpretations are coherent with the observations and analyses, making clear connections between the data and the conclusions drawn. Reporting should be narrative-rich, offering a comprehensive view of the context and findings.

Overall, a coherent qualitative research design that incorporates these elements facilitates a study that not only adds theoretical and practical value to the field but also adheres to high quality. This methodological thoroughness is essential for achieving significant, insightful findings. Examples of well-executed research designs can be valuable references for other researchers conducting qualitative or quantitative investigations. An effective research design is critical for producing robust and impactful research outcomes.

Each qualitative research design is unique, diverse, and meticulously tailored to answer specific research questions, meet distinct objectives, and explore the unique nature of the phenomenon under investigation. The methodology is the wider framework that a research design follows. Each methodology in a research design consists of methods, tools, or techniques that compile data and analyze it following a specific approach.

The methods enable researchers to collect data effectively across individuals, different groups, or observations, ensuring they are aligned with the research design. The following list includes the most commonly used methodologies employed in qualitative research designs, highlighting how they serve different purposes and utilize distinct methods to gather and analyze data.

research design findings

The narrative approach in research focuses on the collection and detailed examination of life stories, personal experiences, or narratives to gain insights into individuals' lives as told from their perspectives. It involves constructing a cohesive story out of the diverse experiences shared by participants, often using chronological accounts. It seeks to understand human experience and social phenomena through the form and content of the stories. These can include spontaneous narrations such as memoirs or diaries from participants or diaries solicited by the researcher. Narration helps construct the identity of an individual or a group and can rationalize, persuade, argue, entertain, confront, or make sense of an event or tragedy. To conduct a narrative investigation, it is recommended that researchers follow these steps:

Identify if the research question fits the narrative approach. Its methods are best employed when a researcher wants to learn about the lifestyle and life experience of a single participant or a small number of individuals.

Select the best-suited participants for the research design and spend time compiling their stories using different methods such as observations, diaries, interviewing their family members, or compiling related secondary sources.

Compile the information related to the stories. Narrative researchers collect data based on participants' stories concerning their personal experiences, for example about their workplace or homes, their racial or ethnic culture, and the historical context in which the stories occur.

Analyze the participant stories and "restore" them within a coherent framework. This involves collecting the stories, analyzing them based on key elements such as time, place, plot, and scene, and then rewriting them in a chronological sequence (Ollerenshaw & Creswell, 2000). The framework may also include elements such as a predicament, conflict, or struggle; a protagonist; and a sequence with implicit causality, where the predicament is somehow resolved (Carter, 1993).

Collaborate with participants by actively involving them in the research. Both the researcher and the participant negotiate the meaning of their stories, adding a credibility check to the analysis (Creswell & Miller, 2000).

A narrative investigation includes collecting a large amount of data from the participants and the researcher needs to understand the context of the individual's life. A keen eye is needed to collect particular stories that capture the individual experiences. Active collaboration with the participant is necessary, and researchers need to discuss and reflect on their own beliefs and backgrounds. Multiple questions could arise in the collection, analysis, and storytelling of individual stories that need to be addressed, such as: Whose story is it? Who can tell it? Who can change it? Which version is compelling? What happens when narratives compete? In a community, what do the stories do among them? (Pinnegar & Daynes, 2006).

research design findings

Make the most of your data with ATLAS.ti

Powerful tools in an intuitive interface, ready for you with a free trial today.

A research design based on phenomenology aims to understand the essence of the lived experiences of a group of people regarding a particular concept or phenomenon. Researchers gather deep insights from individuals who have experienced the phenomenon, striving to describe "what" they experienced and "how" they experienced it. This approach to a research design typically involves detailed interviews and aims to reach a deep existential understanding. The purpose is to reduce individual experiences to a description of the universal essence or understanding the phenomenon's nature (van Manen, 1990). In phenomenology, the following steps are usually followed:

Identify a phenomenon of interest . For example, the phenomenon might be anger, professionalism in the workplace, or what it means to be a fighter.

Recognize and specify the philosophical assumptions of phenomenology , for example, one could reflect on the nature of objective reality and individual experiences.

Collect data from individuals who have experienced the phenomenon . This typically involves conducting in-depth interviews, including multiple sessions with each participant. Additionally, other forms of data may be collected using several methods, such as observations, diaries, art, poetry, music, recorded conversations, written responses, or other secondary sources.

Ask participants two general questions that encompass the phenomenon and how the participant experienced it (Moustakas, 1994). For example, what have you experienced in this phenomenon? And what contexts or situations have typically influenced your experiences within the phenomenon? Other open-ended questions may also be asked, but these two questions particularly focus on collecting research data that will lead to a textural description and a structural description of the experiences, and ultimately provide an understanding of the common experiences of the participants.

Review data from the questions posed to participants . It is recommended that researchers review the answers and highlight "significant statements," phrases, or quotes that explain how participants experienced the phenomenon. The researcher can then develop meaningful clusters from these significant statements into patterns or key elements shared across participants.

Write a textual description of what the participants experienced based on the answers and themes of the two main questions. The answers are also used to write about the characteristics and describe the context that influenced the way the participants experienced the phenomenon, called imaginative variation or structural description. Researchers should also write about their own experiences and context or situations that influenced them.

Write a composite description from the structural and textural description that presents the "essence" of the phenomenon, called the essential and invariant structure.

A phenomenological approach to a research design includes the strict and careful selection of participants in the study where bracketing personal experiences can be difficult to implement. The researcher decides how and in which way their knowledge will be introduced. It also involves some understanding and identification of the broader philosophical assumptions.

research design findings

Grounded theory is used in a research design when the goal is to inductively develop a theory "grounded" in data that has been systematically gathered and analyzed. Starting from the data collection, researchers identify characteristics, patterns, themes, and relationships, gradually forming a theoretical framework that explains relevant processes, actions, or interactions grounded in the observed reality. A grounded theory study goes beyond descriptions and its objective is to generate a theory, an abstract analytical scheme of a process. Developing a theory doesn't come "out of nothing" but it is constructed and based on clear data collection. We suggest the following steps to follow a grounded theory approach in a research design:

Determine if grounded theory is the best for your research problem . Grounded theory is a good design when a theory is not already available to explain a process.

Develop questions that aim to understand how individuals experienced or enacted the process (e.g., What was the process? How did it unfold?). Data collection and analysis occur in tandem, so that researchers can ask more detailed questions that shape further analysis, such as: What was the focal point of the process (central phenomenon)? What influenced or caused this phenomenon to occur (causal conditions)? What strategies were employed during the process? What effect did it have (consequences)?

Gather relevant data about the topic in question . Data gathering involves questions that are usually asked in interviews, although other forms of data can also be collected, such as observations, documents, and audio-visual materials from different groups.

Carry out the analysis in stages . Grounded theory analysis begins with open coding, where the researcher forms codes that inductively emerge from the data (rather than preconceived categories). Researchers can thus identify specific properties and dimensions relevant to their research question.

Assemble the data in new ways and proceed to axial coding . Axial coding involves using a coding paradigm or logic diagram, such as a visual model, to systematically analyze the data. Begin by identifying a central phenomenon, which is the main category or focus of the research problem. Next, explore the causal conditions, which are the categories of factors that influence the phenomenon. Specify the strategies, which are the actions or interactions associated with the phenomenon. Then, identify the context and intervening conditions—both narrow and broad factors that affect the strategies. Finally, delineate the consequences, which are the outcomes or results of employing the strategies.

Use selective coding to construct a "storyline" that links the categories together. Alternatively, the researcher may formulate propositions or theory-driven questions that specify predicted relationships among these categories.

Develop and visually present a matrix that clarifies the social, historical, and economic conditions influencing the central phenomenon. This optional step encourages viewing the model from the narrowest to the broadest perspective.

Write a substantive-level theory that is closely related to a specific problem or population. This step is optional but provides a focused theoretical framework that can later be tested with quantitative data to explore its generalizability to a broader sample.

Allow theory to emerge through the memo-writing process, where ideas about the theory evolve continuously throughout the stages of open, axial, and selective coding.

The researcher should initially set aside any preconceived theoretical ideas to allow for the emergence of analytical and substantive theories. This is a systematic research approach, particularly when following the methodological steps outlined by Strauss and Corbin (1990). For those seeking more flexibility in their research process, the approach suggested by Charmaz (2006) might be preferable.

One of the challenges when using this method in a research design is determining when categories are sufficiently saturated and when the theory is detailed enough. To achieve saturation, discriminant sampling may be employed, where additional information is gathered from individuals similar to those initially interviewed to verify the applicability of the theory to these new participants. Ultimately, its goal is to develop a theory that comprehensively describes the central phenomenon, causal conditions, strategies, context, and consequences.

research design findings

Ethnographic research design

An ethnographic approach in research design involves the extended observation and data collection of a group or community. The researcher immerses themselves in the setting, often living within the community for long periods. During this time, they collect data by observing and recording behaviours, conversations, and rituals to understand the group's social dynamics and cultural norms. We suggest following these steps for ethnographic methods in a research design:

Assess whether ethnography is the best approach for the research design and questions. It's suitable if the goal is to describe how a cultural group functions and to delve into their beliefs, language, behaviours, and issues like power, resistance, and domination, particularly if there is limited literature due to the group’s marginal status or unfamiliarity to mainstream society.

Identify and select a cultural group for your research design. Choose one that has a long history together, forming distinct languages, behaviours, and attitudes. This group often might be marginalized within society.

Choose cultural themes or issues to examine within the group. Analyze interactions in everyday settings to identify pervasive patterns such as life cycles, events, and overarching cultural themes. Culture is inferred from the group members' words, actions, and the tension between their actual and expected behaviours, as well as the artifacts they use.

Conduct fieldwork to gather detailed information about the group’s living and working environments. Visit the site, respect the daily lives of the members, and collect a diverse range of materials, considering ethical aspects such as respect and reciprocity.

Compile and analyze cultural data to develop a set of descriptive and thematic insights. Begin with a detailed description of the group based on observations of specific events or activities over time. Then, conduct a thematic analysis to identify patterns or themes that illustrate how the group functions and lives. The final output should be a comprehensive cultural portrait that integrates both the participants (emic) and the researcher’s (etic) perspectives, potentially advocating for the group’s needs or suggesting societal changes to better accommodate them.

Researchers engaging in ethnography need a solid understanding of cultural anthropology and the dynamics of sociocultural systems, which are commonly explored in ethnographic research. The data collection phase is notably extensive, requiring prolonged periods in the field. Ethnographers often employ a literary, quasi-narrative style in their narratives, which can pose challenges for those accustomed to more conventional social science writing methods.

Another potential issue is the risk of researchers "going native," where they become overly assimilated into the community under study, potentially jeopardizing the objectivity and completion of their research. It's crucial for researchers to be aware of their impact on the communities and environments they are studying.

The case study approach in a research design focuses on a detailed examination of a single case or a small number of cases. Cases can be individuals, groups, organizations, or events. Case studies are particularly useful for research designs that aim to understand complex issues in real-life contexts. The aim is to provide a thorough description and contextual analysis of the cases under investigation. We suggest following these steps in a case study design:

Assess if a case study approach suits your research questions . This approach works well when you have distinct cases with defined boundaries and aim to deeply understand these cases or compare multiple cases.

Choose your case or cases. These could involve individuals, groups, programs, events, or activities. Decide whether an individual or collective, multi-site or single-site case study is most appropriate, focusing on specific cases or themes (Stake, 1995; Yin, 2003).

Gather data extensively from diverse sources . Collect information through archival records, interviews, direct and participant observations, and physical artifacts (Yin, 2003).

Analyze the data holistically or in focused segments . Provide a comprehensive overview of the entire case or concentrate on specific aspects. Start with a detailed description including the history of the case and its chronological events then narrow down to key themes. The aim is to delve into the case's complexity rather than generalize findings.

Interpret and report the significance of the case in the final phase . Explain what insights were gained, whether about the subject of the case in an instrumental study or an unusual situation in an intrinsic study (Lincoln & Guba, 1985).

The investigator must carefully select the case or cases to study, recognizing that multiple potential cases could illustrate a chosen topic or issue. This selection process involves deciding whether to focus on a single case for deeper analysis or multiple cases, which may provide broader insights but less depth per case. Each choice requires a well-justified rationale for the selected cases. Researchers face the challenge of defining the boundaries of a case, such as its temporal scope and the events and processes involved. This decision in a research design is crucial as it affects the depth and value of the information presented in the study, and therefore should be planned to ensure a comprehensive portrayal of the case.

research design findings

Qualitative and quantitative research designs are distinct in their approach to data collection and data analysis. Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research prioritizes understanding the depth and richness of human experiences, behaviours, and interactions.

Qualitative methods in a research design have to have internal coherence, meaning that all elements of the research project—research question, data collection, data analysis, findings, and theory—are well-aligned and consistent with each other. This coherence in the research study is especially crucial in inductive qualitative research, where the research process often follows a recursive and evolving path. Ensuring that each component of the research design fits seamlessly with the others enhances the clarity and impact of the study, making the research findings more robust and compelling. Whether it is a descriptive research design, explanatory research design, diagnostic research design, or correlational research design coherence is an important element in both qualitative and quantitative research.

Finally, a good research design ensures that the research is conducted ethically and considers the well-being and rights of participants when managing collected data. The research design guides researchers in providing a clear rationale for their methodologies, which is crucial for justifying the research objectives to the scientific community. A thorough research design also contributes to the body of knowledge, enabling researchers to build upon past research studies and explore new dimensions within their fields. At the core of the design, there is a clear articulation of the research objectives. These objectives should be aligned with the underlying concepts being investigated, offering a concise method to answer the research questions and guiding the direction of the study with proper qualitative methods.

Carter, K. (1993). The place of a story in the study of teaching and teacher education. Educational Researcher, 22(1), 5-12, 18.

Charmaz, K. (2006). Constructing grounded theory. London: Sage.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124-130.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.

Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: Sage.

Ollerenshaw, J. A., & Creswell, J. W. (2000, April). Data analysis in narrative research: A comparison of two “restoring” approaches. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.

van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Ontario, Canada: University of Western Ontario.

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage

research design findings

Whatever your research objectives, make it happen with ATLAS.ti!

Download a free trial today.

research design findings

  • What is New
  • Download Your Software
  • Behavioral Research
  • Software for Consumer Research
  • Software for Human Factors R&D
  • Request Live Demo
  • Contact Sales

Sensor Hardware

Man wearing VR headset

We carry a range of biosensors from the top hardware producers. All compatible with iMotions

research design findings

Higher Education

research design findings

Consultancy

Training and certification.

research design findings

Fragrance Testing – Unveiling the Olfactory Impact on Human Behavior

Consumer Insights

Morten Pedersen

research design findings

What is Habituation, and How Does it Work?  

News & events.

  • iMotions Lab
  • iMotions Online
  • Eye Tracking
  • Eye Tracking Screen Based
  • Eye Tracking VR
  • Eye Tracking Glasses
  • Eye Tracking Webcam
  • Automated AOI
  • FEA (Facial Expression Analysis)
  • Voice Analysis
  • EDA/GSR (Electrodermal Activity)
  • EEG (Electroencephalography)
  • ECG (Electrocardiography)
  • EMG (Electromyography)
  • Respiration
  • iMotions Lab: New features
  • iMotions Lab: Developers
  • EEG sensors
  • Psychology Research Lab
  • Product Design Lab
  • Sensory and Perceptual
  • Consumer Inights
  • Human Factors R&D
  • Work Environments, Training and Safety
  • Customer Stories
  • Published Research Papers
  • Document Library
  • Customer Support Program
  • Help Center
  • Release Notes
  • Contact Support
  • Partnerships
  • Selling Partners
  • Mission Statement
  • Ownership and Structure
  • Executive Management
  • Job Opportunities

Publications

  • Newsletter Sign Up

The Importance of Research Design: A Comprehensive Guide

Morten Pedersen

Research design plays a crucial role in conducting scientific studies and gaining meaningful insights. A well-designed research enhances the validity and reliability of the findings and allows for the replication of studies by other researchers. This comprehensive guide will provide an in-depth understanding of research design, its key components, different types, and its role in scientific inquiry. Furthermore, it will discuss the necessary steps in developing a research design and highlight some of the challenges that researchers commonly face.

Table of Contents

Understanding research design.

Research design refers to the overall plan or strategy that outlines how a study is conducted. It serves as a blueprint for researchers, guiding them in their investigation, and helps ensure that the study objectives are met. Understanding research design is essential for researchers to effectively gather and analyze data to answer research questions.

When embarking on a research study, researchers must carefully consider the design they will use. The design determines the structure of the study, including the research questions, data collection methods, and analysis techniques. It provides clarity on how the study will be conducted and helps researchers determine the best approach to achieve their research objectives. A well-designed study increases the chances of obtaining valid and reliable results.

Definition and Purpose of Research Design

Research design is the framework that outlines the structure of a study, including the research questions, data collection methods, and analysis techniques. It provides a systematic approach to conducting research and ensures that all aspects of the study are carefully planned and executed.

The purpose of research design is to provide a clear roadmap for researchers to follow. It helps them define the research questions they want to answer and identify the variables they will study. By clearly defining the purpose of the study, researchers can ensure that their research design aligns with their objectives.

Key Components of Research Design

A research design consists of several key components that influence the study’s validity and reliability. These components include the research questions, variables and operational definitions, sampling techniques, data collection methods, and statistical analysis procedures.

The research questions are the foundation of any study. They guide the entire research process and help researchers focus their efforts. By formulating clear and concise research questions, researchers can ensure that their study addresses the specific issues they want to investigate.

research design findings

Variables and operational definitions are also crucial components of research design. Variables are the concepts or phenomena that researchers want to measure or study. Operational definitions provide a clear and specific description of how these variables will be measured or observed. By clearly defining variables and their operational definitions, researchers can ensure that their study is consistent and replicable.

Sampling techniques play a vital role in research design as well. Researchers must carefully select the participants or samples they will study to ensure that their findings are generalizable to the larger population. Different sampling techniques, such as random sampling or purposive sampling, can be used depending on the research objectives and constraints.

Data collection methods are another important component of research design. Researchers must decide how they will collect data, whether through surveys, interviews, observations, or experiments. The choice of data collection method depends on the research questions and the type of data needed to answer them.

Finally, statistical analysis procedures are used to analyze the collected data and draw meaningful conclusions. Researchers must determine the appropriate statistical tests or techniques to use based on the nature of their data and research questions. The choice of statistical analysis procedures ensures that the data is analyzed accurately and that the results are valid and reliable.

Types of Research Design

Research design encompasses various types that researchers can choose depending on their research goals and the nature of the phenomenon being studied. Understanding the different types of research design is essential for researchers to select the most appropriate approach for their study.

When embarking on a research project, researchers must carefully consider the design they will employ. The design chosen will shape the entire study, from the data collection process to the analysis and interpretation of results. Let’s explore some of the most common types of research design in more detail.

Experimental Design

Experimental design involves manipulating one or more variables to observe their effect on the dependent variable. This type of design allows researchers to establish cause-and-effect relationships between variables by controlling for extraneous factors. Experimental design often relies on random assignment and control groups to minimize biases.

Imagine a group of researchers interested in studying the effects of a new teaching method on student performance. They could randomly assign students to two groups: one group would receive instruction using the new teaching method, while the other group would receive instruction using the traditional method. By comparing the performance of the two groups, the researchers can determine whether the new teaching method has a significant impact on student learning.

Experimental design provides a strong foundation for making causal claims, as it allows researchers to control for confounding variables and isolate the effects of the independent variable. However, it may not always be feasible or ethical to manipulate variables, leading researchers to explore alternative designs.

Free 44-page Experimental Design Guide

For Beginners and Intermediates

  • Introduction to experimental methods
  • Respondent management with groups and populations
  • How to set up stimulus selection and arrangement

research design findings

Non-Experimental Design

Non-experimental design is used when it is not feasible or ethical to manipulate variables. This design relies on naturally occurring variations in data and focuses on observing and describing relationships between variables. Non-experimental design can be useful for exploratory research or when studying phenomena that cannot be controlled, such as human behavior.

For instance, researchers interested in studying the relationship between socioeconomic status and health outcomes may collect data from a large sample of individuals and analyze the existing differences. By examining the data, they can determine whether there is a correlation between socioeconomic status and health, without manipulating any variables.

Non-experimental design allows researchers to study real-world phenomena in their natural setting, providing valuable insights into complex social, psychological, and economic processes. However, it is important to note that non-experimental designs cannot establish causality, as there may be other variables at play that influence the observed relationships.

Quasi-Experimental Design

Quasi-experimental design resembles experimental design but lacks the element of random assignment. In situations where random assignment is not possible or practical, researchers can utilize quasi-experimental designs to gather data and make inferences. However, caution must be exercised when drawing causal conclusions from quasi-experimental studies.

Consider a scenario where researchers are interested in studying the effects of a new drug on patient recovery time. They cannot randomly assign patients to receive the drug or a placebo due to ethical considerations. Instead, they can compare the recovery times of patients who voluntarily choose to take the drug with those who do not. While this design allows for data collection and analysis, it is important to acknowledge that other factors, such as patient motivation or severity of illness, may influence the observed outcomes.

Quasi-experimental designs are valuable when experimental designs are not feasible or ethical. They provide an opportunity to explore relationships and gather data in real-world contexts. However, researchers must be cautious when interpreting the results, as causal claims may be limited due to the lack of random assignment.

By understanding the different types of research design, researchers can make informed decisions about the most appropriate approach for their study. Each design offers unique advantages and limitations, and the choice depends on the research question, available resources, and ethical considerations. Regardless of the design chosen, rigorous methodology and careful data analysis are crucial for producing reliable and valid research findings.

The Role of Research Design in Scientific Inquiry

A well-designed research study enhances the validity and reliability of the findings. Research design plays a crucial role in ensuring the scientific rigor of a study and facilitates the replication of studies by other researchers. Understanding the role of research design in scientific inquiry is vital for researchers to conduct impactful and robust research.

Ensuring Validity and Reliability

Research design plays a critical role in ensuring the validity and reliability of the study’s findings. Validity refers to the degree to which the study measures what it intends to measure, while reliability pertains to the consistency and stability of the results. Through careful consideration of the research design, researchers can minimize potential biases and increase the accuracy of their measurements.

Facilitating Replication of Studies

A robust research design allows for the replication of studies by other researchers. Replication plays a vital role in the scientific process as it helps confirm the validity and generalizability of research findings. By clearly documenting the research design, researchers enable others to reproduce the study and validate the results, thereby contributing to the cumulative knowledge in a field.

Steps in Developing a Research Design

Developing a research design involves a systematic process that includes several important steps. Researchers need to carefully consider each step to ensure that their study is well-designed and capable of addressing their research questions effectively.

Identifying Research Questions

The first step in developing a research design is to identify and define the research questions or hypotheses. Researchers need to clearly articulate what they aim to investigate and what specific information they want to gather. Clear research questions provide guidance for the subsequent steps in the research design process.

Selecting Appropriate Design Type

Once the research questions are identified, researchers need to select the most appropriate type of research design. The choice of design depends on various factors, including the research goals, the nature of the research questions, and the available resources. Careful consideration of these factors is crucial to ensure that the chosen design aligns with the study objectives.

Determining Data Collection Methods

After selecting the research design, researchers need to determine the most suitable data collection methods. Depending on the research questions and the type of data required, researchers can utilize a range of methods, such as surveys, interviews, observations, or experiments. The chosen methods should align with the research objectives and allow for the collection of high-quality data.

One of the most important considerations when designing a study in human behavior research is participant recruitment. We have written a comprehensive guide on best practices and pitfalls to be aware of when recruiting participants, which can be read here.

Enhancing Research Design with iMotions and Biosensors

Introduction to enhanced research design.

In the realm of scientific studies, especially within human cognitive-behavioral research, the deployment of advanced technologies such as iMotions software and biosensors has revolutionized research design. This chapter delves into how these technologies can be integrated into various research designs, improving the depth, accuracy, and reliability of scientific inquiries.

Integrating iMotions in Research Design

Imotions software: a key to multimodal data integration.

The iMotions platform stands as a pivotal tool in modern research design. It’s designed to integrate data from a plethora of biosensors, providing a comprehensive analysis of human behavior. This software facilitates the synchronizing of physiological, cognitive, and emotional responses with external stimuli, thus enriching the understanding of human behavior in various contexts.

Biosensors: Gateways to Deeper Insights

Biosensors, including eye trackers, EEG, GSR, ECG, and facial expression analysis tools, provide nuanced insights into the subconscious and conscious aspects of human behavior. These tools help researchers in capturing data that is often unattainable through traditional data collection methods like surveys and interviews.

Application in Different Research Designs

  • Eye Tracking : In experimental designs, where the impact of visual stimuli is crucial, eye trackers can reveal how subjects interact with these stimuli, thereby offering insights into cognitive processes and attention.
  • EEG : EEG biosensors allow researchers to monitor brain activity in response to controlled experimental manipulations, offering a window into cognitive and emotional responses.

research design findings

  • Facial Expression Analysis : In observational studies, analyzing facial expressions can provide objective data on emotional responses in natural settings, complementing subjective self-reports.
  • GSR/EDA : These tools measure physiological arousal in real-life scenarios, giving researchers insights into emotional states without the need for intrusive measures.
  • EMG : In studies where direct manipulation isn’t feasible, EMG can indicate subtle responses to stimuli, which might be overlooked in traditional observational methods.
  • ECG/PPG : These sensors can be used to understand the impact of various interventions on physiological states such as stress or relaxation.

Streamlining Research Design with iMotions

The iMotions platform offers a streamlined process for integrating various biosensors into a research design. Researchers can easily design experiments, collect multimodal data, and analyze results in a unified interface. This reduces the complexity often associated with handling multiple streams of data and ensures a cohesive and comprehensive research approach.

Integrating iMotions software and biosensors into research design opens new horizons for scientific inquiry. This technology enhances the depth and breadth of data collection, paving the way for more nuanced and comprehensive findings.

Whether in experimental, non-experimental, or quasi-experimental designs, iMotions and biosensors offer invaluable tools for researchers aiming to uncover the intricate layers of human behavior and cognitive processes. The future of research design is undeniably intertwined with the advancements in these technologies, leading to more robust, reliable, and insightful scientific discoveries.

Challenges in Research Design

Research design can present several challenges that researchers need to overcome to conduct reliable and valid studies. Being aware of these challenges is essential for researchers to address them effectively and ensure the integrity of their research.

Ethical Considerations

Research design must adhere to ethical guidelines and principles to protect the rights and well-being of participants. Researchers need to obtain informed consent, ensure participant confidentiality, and minimize potential harm or discomfort. Ethical considerations should be carefully integrated into the research design to promote ethical research practices.

Practical Limitations

Researchers often face practical limitations that may impact the design and execution of their studies. Limited resources, time constraints, access to participants or data, and logistical challenges can pose obstacles during the research process. Researchers need to navigate these limitations and make thoughtful choices to ensure the feasibility and quality of their research.

Research design is a vital aspect of conducting scientific studies. It provides a structured framework for researchers to answer their research questions and obtain reliable and valid results. By understanding the different types of research design and following the necessary steps in developing a research design, researchers can enhance the rigor and impact of their studies.

However, researchers must also be mindful of the challenges they may encounter, such as ethical considerations and practical limitations, and take appropriate measures to address them. Ultimately, a well-designed research study contributes to the advancement of knowledge and promotes evidence-based decision-making in various fields.

Last edited

About the author

See what is next in human behavior research

Follow our newsletter to get the latest insights and events send to your inbox.

Related Posts

research design findings

Introducing iMotions’ New Automated AOI Module

research design findings

Smart Eye Aurora 60Hz Eye Tracker White Paper: Real-World Performance, Real Results

research design findings

Unlocking the Potential of VR Eye Trackers: How They Work and Their Applications

research design findings

Exploring Mobile Eye Trackers: How Eye Tracking Glasses Work and Their Applications

You might also like these.

research design findings

How Meditation Affects the Brain – Exploring the Science Behind Inner Calm

research design findings

Optimizing Safety Procedures with Eye-Tracking Glasses 

research design findings

An Introduction to Concept Testing with Biosensors

Case Stories

Explore Blog Categories

Best Practice

Collaboration, product guides, product news, research fundamentals, research insights, 🍪 use of cookies.

We are committed to protecting your privacy and only use cookies to improve the user experience.

Chose which third-party services that you will allow to drop cookies. You can always change your cookie settings via the Cookie Settings link in the footer of the website. For more information read our Privacy Policy.

  • gtag This tag is from Google and is used to associate user actions with Google Ad campaigns to measure their effectiveness. Enabling this will load the gtag and allow for the website to share information with Google. This service is essential and can not be disabled.
  • Intercom Intercom provides you with direct access to the experts in our office via its chat. The service tracks visitors to the website but does not store any information unless consent is given. This service is essential and can not be disabled.
  • Pardot Collects information such as the IP address, browser type, and referring URL. This information is used to create reports on website traffic and track the effectiveness of marketing campaigns.
  • Third-party iFrames Allows you to see thirdparty iFrames.

Pfeiffer Library

Research Methodologies

Research design, external validity, internal validity, threats to validity.

  • What are research methodologies?
  • What are research methods?
  • Additional Sources

According to Jenkins-Smith, et al. (2017), a research design is the set of steps you take to collect and analyze your research data.  In other words, it is the general plan to answer your research topic or question.  You can also think of it as a combination of your research methodology and your research method.  Your research design should include the following: 

  • A clear research question
  • Theoretical frameworks you will use to analyze your data
  • Key concepts
  • Your hypothesis/hypotheses
  • Independent and dependent variables (if applicable)
  • Strengths and weaknesses of your chosen design

There are two types of research designs:

  • Experimental design: This design is like a standard science lab experiment because the researcher controls as many variables as they can and assigns research subjects to groups.  The researcher manipulates the experimental treatment and gives it to one group.  The other group receives the unmanipulated treatment (or not treatment) and the researcher examines affect of the treatment in each group (dependent variable).  This design can have more than two groups depending on your study requirements.
  • Observational design: This is when the researcher has no control over the independent variable and which research participants get exposed to it.  Depending on your research topic, this is the only design you can use.  This is a more natural approach to a study because you are not controlling the experimental treatment.  You are allowing the variable to occur on its own without your interference.  Weather experiments are a great example of observational design because the researcher has no control over the weather and how it changes.

When considering your research design, you will also need to consider your study's validity and any potential threats to its validity.  There are two types of validity: external and internal validity.  Each type demonstrates a degree of accuracy and thoughtfulness in a study and they contribute to a study's reliability.  Information about external and internal validity is included below.

External validity is the degree to which you can generalize the findings of your research study.  It is determining whether or not the findings are applicable to other settings (Jenkins-Smith, 2017).  In many cases, the external validity of a study is strongly linked to the sample population.  For example, if you studied a group of twenty-five year old male Americans, you could potentially generalize your findings to all twenty-five year old American males.  External validity is also the ability for someone else to replicate your study and achieve the same results (Jenkins-Smith, 2017).  If someone replicates your exact study and gets different results, then your study may have weak external validity.

Questions to ask when assessing external validity:

  • Do my conclusions apply to other studies?
  • If someone were to replicate my study, would they get the same results?
  • Are my findings generalizable to a certain population?

Internal validity is when a researcher can conclude a causal relationship between their independent variable and their dependent variable.  It is a way to verify the study's findings because it draws a relationship between the variables (Jenkins-Smith, 2017).  In other words, it is the actual factors that result in the study's outcome (Singh, 2007).  According to Singh (2007), internal validity can be placed into 4 subcategories:

  • Face validity: This confirms the fact that the measure accurately reflects the research question.
  • Content validity: This assesses the measurement technique's compatibility with other literature on the topic.  It determines how well the tool used to gather data measures the item or concept that the researcher is interested in.
  • Criterion validity: This demonstrates the accuracy of a study by comparing it to a similar study.
  • Construct validity: This measures the appropriateness of the conclusions drawn from a study.

According to Jenkins-Smith (2017), there are several threats that may impact the internal and external validity of a study:

Threats to External Validity

  • Interaction with testing: Any testing done before the actual experiment may decrease participants' sensitivity to the actual treatment.
  • Sample misrepresentation: A population sample that is unrepresentative of the entire population.
  • Selection bias: Researchers may have bias towards selecting certain subjects to participate in the study who may be more or less sensitive to the experimental treatment.
  • Environment: If the study was conducted in a lab setting, the findings may not be able to transfer to a more natural setting.

Threats to Internal Validity

  • Unplanned events that occur during the experiment that effect the results.
  • Changes to the participants during the experiment, such as fatigue, aging, etc.
  • Selection bias: When research subjects are not selected randomly.
  • If participants drop out of the study without completing it.
  • Changing the way the data is collected or measured during the study.
  • << Previous: Welcome
  • Next: What are research methodologies? >>
  • Last Updated: Aug 2, 2022 2:36 PM
  • URL: https://library.tiffin.edu/researchmethodologies
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write the Results/Findings Section in Research

research design findings

What is the research paper Results section and what does it do?

The Results section of a scientific research paper represents the core findings of a study derived from the methods applied to gather and analyze information. It presents these findings in a logical sequence without bias or interpretation from the author, setting up the reader for later interpretation and evaluation in the Discussion section. A major purpose of the Results section is to break down the data into sentences that show its significance to the research question(s).

The Results section appears third in the section sequence in most scientific papers. It follows the presentation of the Methods and Materials and is presented before the Discussion section —although the Results and Discussion are presented together in many journals. This section answers the basic question “What did you find in your research?”

What is included in the Results section?

The Results section should include the findings of your study and ONLY the findings of your study. The findings include:

  • Data presented in tables, charts, graphs, and other figures (may be placed into the text or on separate pages at the end of the manuscript)
  • A contextual analysis of this data explaining its meaning in sentence form
  • All data that corresponds to the central research question(s)
  • All secondary findings (secondary outcomes, subgroup analyses, etc.)

If the scope of the study is broad, or if you studied a variety of variables, or if the methodology used yields a wide range of different results, the author should present only those results that are most relevant to the research question stated in the Introduction section .

As a general rule, any information that does not present the direct findings or outcome of the study should be left out of this section. Unless the journal requests that authors combine the Results and Discussion sections, explanations and interpretations should be omitted from the Results.

How are the results organized?

The best way to organize your Results section is “logically.” One logical and clear method of organizing research results is to provide them alongside the research questions—within each research question, present the type of data that addresses that research question.

Let’s look at an example. Your research question is based on a survey among patients who were treated at a hospital and received postoperative care. Let’s say your first research question is:

results section of a research paper, figures

“What do hospital patients over age 55 think about postoperative care?”

This can actually be represented as a heading within your Results section, though it might be presented as a statement rather than a question:

Attitudes towards postoperative care in patients over the age of 55

Now present the results that address this specific research question first. In this case, perhaps a table illustrating data from a survey. Likert items can be included in this example. Tables can also present standard deviations, probabilities, correlation matrices, etc.

Following this, present a content analysis, in words, of one end of the spectrum of the survey or data table. In our example case, start with the POSITIVE survey responses regarding postoperative care, using descriptive phrases. For example:

“Sixty-five percent of patients over 55 responded positively to the question “ Are you satisfied with your hospital’s postoperative care ?” (Fig. 2)

Include other results such as subcategory analyses. The amount of textual description used will depend on how much interpretation of tables and figures is necessary and how many examples the reader needs in order to understand the significance of your research findings.

Next, present a content analysis of another part of the spectrum of the same research question, perhaps the NEGATIVE or NEUTRAL responses to the survey. For instance:

  “As Figure 1 shows, 15 out of 60 patients in Group A responded negatively to Question 2.”

After you have assessed the data in one figure and explained it sufficiently, move on to your next research question. For example:

  “How does patient satisfaction correspond to in-hospital improvements made to postoperative care?”

results section of a research paper, figures

This kind of data may be presented through a figure or set of figures (for instance, a paired T-test table).

Explain the data you present, here in a table, with a concise content analysis:

“The p-value for the comparison between the before and after groups of patients was .03% (Fig. 2), indicating that the greater the dissatisfaction among patients, the more frequent the improvements that were made to postoperative care.”

Let’s examine another example of a Results section from a study on plant tolerance to heavy metal stress . In the Introduction section, the aims of the study are presented as “determining the physiological and morphological responses of Allium cepa L. towards increased cadmium toxicity” and “evaluating its potential to accumulate the metal and its associated environmental consequences.” The Results section presents data showing how these aims are achieved in tables alongside a content analysis, beginning with an overview of the findings:

“Cadmium caused inhibition of root and leave elongation, with increasing effects at higher exposure doses (Fig. 1a-c).”

The figure containing this data is cited in parentheses. Note that this author has combined three graphs into one single figure. Separating the data into separate graphs focusing on specific aspects makes it easier for the reader to assess the findings, and consolidating this information into one figure saves space and makes it easy to locate the most relevant results.

results section of a research paper, figures

Following this overall summary, the relevant data in the tables is broken down into greater detail in text form in the Results section.

  • “Results on the bio-accumulation of cadmium were found to be the highest (17.5 mg kgG1) in the bulb, when the concentration of cadmium in the solution was 1×10G2 M and lowest (0.11 mg kgG1) in the leaves when the concentration was 1×10G3 M.”

Captioning and Referencing Tables and Figures

Tables and figures are central components of your Results section and you need to carefully think about the most effective way to use graphs and tables to present your findings . Therefore, it is crucial to know how to write strong figure captions and to refer to them within the text of the Results section.

The most important advice one can give here as well as throughout the paper is to check the requirements and standards of the journal to which you are submitting your work. Every journal has its own design and layout standards, which you can find in the author instructions on the target journal’s website. Perusing a journal’s published articles will also give you an idea of the proper number, size, and complexity of your figures.

Regardless of which format you use, the figures should be placed in the order they are referenced in the Results section and be as clear and easy to understand as possible. If there are multiple variables being considered (within one or more research questions), it can be a good idea to split these up into separate figures. Subsequently, these can be referenced and analyzed under separate headings and paragraphs in the text.

To create a caption, consider the research question being asked and change it into a phrase. For instance, if one question is “Which color did participants choose?”, the caption might be “Color choice by participant group.” Or in our last research paper example, where the question was “What is the concentration of cadmium in different parts of the onion after 14 days?” the caption reads:

 “Fig. 1(a-c): Mean concentration of Cd determined in (a) bulbs, (b) leaves, and (c) roots of onions after a 14-day period.”

Steps for Composing the Results Section

Because each study is unique, there is no one-size-fits-all approach when it comes to designing a strategy for structuring and writing the section of a research paper where findings are presented. The content and layout of this section will be determined by the specific area of research, the design of the study and its particular methodologies, and the guidelines of the target journal and its editors. However, the following steps can be used to compose the results of most scientific research studies and are essential for researchers who are new to preparing a manuscript for publication or who need a reminder of how to construct the Results section.

Step 1 : Consult the guidelines or instructions that the target journal or publisher provides authors and read research papers it has published, especially those with similar topics, methods, or results to your study.

  • The guidelines will generally outline specific requirements for the results or findings section, and the published articles will provide sound examples of successful approaches.
  • Note length limitations on restrictions on content. For instance, while many journals require the Results and Discussion sections to be separate, others do not—qualitative research papers often include results and interpretations in the same section (“Results and Discussion”).
  • Reading the aims and scope in the journal’s “ guide for authors ” section and understanding the interests of its readers will be invaluable in preparing to write the Results section.

Step 2 : Consider your research results in relation to the journal’s requirements and catalogue your results.

  • Focus on experimental results and other findings that are especially relevant to your research questions and objectives and include them even if they are unexpected or do not support your ideas and hypotheses.
  • Catalogue your findings—use subheadings to streamline and clarify your report. This will help you avoid excessive and peripheral details as you write and also help your reader understand and remember your findings. Create appendices that might interest specialists but prove too long or distracting for other readers.
  • Decide how you will structure of your results. You might match the order of the research questions and hypotheses to your results, or you could arrange them according to the order presented in the Methods section. A chronological order or even a hierarchy of importance or meaningful grouping of main themes or categories might prove effective. Consider your audience, evidence, and most importantly, the objectives of your research when choosing a structure for presenting your findings.

Step 3 : Design figures and tables to present and illustrate your data.

  • Tables and figures should be numbered according to the order in which they are mentioned in the main text of the paper.
  • Information in figures should be relatively self-explanatory (with the aid of captions), and their design should include all definitions and other information necessary for readers to understand the findings without reading all of the text.
  • Use tables and figures as a focal point to tell a clear and informative story about your research and avoid repeating information. But remember that while figures clarify and enhance the text, they cannot replace it.

Step 4 : Draft your Results section using the findings and figures you have organized.

  • The goal is to communicate this complex information as clearly and precisely as possible; precise and compact phrases and sentences are most effective.
  • In the opening paragraph of this section, restate your research questions or aims to focus the reader’s attention to what the results are trying to show. It is also a good idea to summarize key findings at the end of this section to create a logical transition to the interpretation and discussion that follows.
  • Try to write in the past tense and the active voice to relay the findings since the research has already been done and the agent is usually clear. This will ensure that your explanations are also clear and logical.
  • Make sure that any specialized terminology or abbreviation you have used here has been defined and clarified in the  Introduction section .

Step 5 : Review your draft; edit and revise until it reports results exactly as you would like to have them reported to your readers.

  • Double-check the accuracy and consistency of all the data, as well as all of the visual elements included.
  • Read your draft aloud to catch language errors (grammar, spelling, and mechanics), awkward phrases, and missing transitions.
  • Ensure that your results are presented in the best order to focus on objectives and prepare readers for interpretations, valuations, and recommendations in the Discussion section . Look back over the paper’s Introduction and background while anticipating the Discussion and Conclusion sections to ensure that the presentation of your results is consistent and effective.
  • Consider seeking additional guidance on your paper. Find additional readers to look over your Results section and see if it can be improved in any way. Peers, professors, or qualified experts can provide valuable insights.

One excellent option is to use a professional English proofreading and editing service  such as Wordvice, including our paper editing service . With hundreds of qualified editors from dozens of scientific fields, Wordvice has helped thousands of authors revise their manuscripts and get accepted into their target journals. Read more about the  proofreading and editing process  before proceeding with getting academic editing services and manuscript editing services for your manuscript.

As the representation of your study’s data output, the Results section presents the core information in your research paper. By writing with clarity and conciseness and by highlighting and explaining the crucial findings of their study, authors increase the impact and effectiveness of their research manuscripts.

For more articles and videos on writing your research manuscript, visit Wordvice’s Resources page.

Wordvice Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers

IMAGES

  1. 25 Types of Research Designs (2024)

    research design findings

  2. Research Design In Research Methodology Sample

    research design findings

  3. Mixed Methods Research

    research design findings

  4. 10 Types Of Research Design

    research design findings

  5. How to Create a Strong Research Design: 2-Minute Summary

    research design findings

  6. What is Research Design in Qualitative Research

    research design findings

VIDEO

  1. Types of Research Design

  2. Research Approach and Research Design #Types of Research Design # Classification # Lecture 2

  3. What is research design? #how to design a research advantages of research design

  4. Types of Research Design

  5. Research design, what is research design, meaning of research design, research design definition

  6. Demystifying Different Research Design Types

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your ... It can also help other researchers validate and add to your findings (high replicability). Step 6: Decide on your data analysis strategies. On its own, raw data can't answer your research question. The last step of designing your research is planning how you'll analyze the data.

  2. Research Design

    Enhancing the validity and generalizability of the research findings. Applications of Research Design. There are numerous applications of research design in various fields, some of which are: Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena ...

  3. Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: ... It can also help other researchers validate and add to your findings. Step 6: Decide on your data analysis strategies. On their own, raw data can't answer your research question. ...

  4. What Is Research Design? 8 Types + Examples

    Experimental Research Design. Experimental research design is used to determine if there is a causal relationship between two or more variables.With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions ...

  5. Organizing Your Social Sciences Research Paper

    Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice. Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies ...

  6. Research Findings

    Education: Research findings in education can be used to develop effective teaching methods, improve learning outcomes, and design new educational programs. Technology : Research findings in technology can be applied to develop new products, improve existing products, and enhance user experiences.

  7. What is a Research Design? Definition, Types, Methods and Examples

    The choice of research design depends on the nature of the research and the goals of the study. A well-constructed research design is crucial because it helps ensure the validity, reliability, and generalizability of research findings, allowing researchers to draw meaningful conclusions and contribute to the body of knowledge in their field.

  8. (PDF) Basics of Research Design: A Guide to selecting appropriate

    The essence of research design is to translate a research problem into data for analysis so as to provide relevant answers to research questions at a minimum cost. ... The findings contribute to ...

  9. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  10. What Is a Research Design?

    Ensuring that each component of the research design fits seamlessly with the others enhances the clarity and impact of the study, making the research findings more robust and compelling. Whether it is a descriptive research design, explanatory research design, diagnostic research design, or correlational research design coherence is an ...

  11. Research design

    Research design refers to the overall strategy utilized to answer research questions. A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak ...

  12. Planning Qualitative Research: Design and Decision Making for New

    This triangulation strengthens the research findings because "various strands of data are braided together to promote a greater understanding of the case" (Baxter & Jack, 2008, p. 554). To accomplish that reconciliation, researchers may use the constant comparative method of content analysis ( Lincoln & Guba, 1985 ) of the entire case, or ...

  13. PDF Design Decisions in Research

    developing a research idea into a realistic and appropriate research design. This phase can be time-consuming, depending on the level of expertise of the investigator. ... Transferability Extent to which findings can be transferred to other settings or groups. Table previously published in: Whittemore, R. & Melkus, G. (2008). Designing a research

  14. The Importance of Research Design: A Comprehensive Guide

    A well-designed research study enhances the validity and reliability of the findings. Research design plays a crucial role in ensuring the scientific rigor of a study and facilitates the replication of studies by other researchers. Understanding the role of research design in scientific inquiry is vital for researchers to conduct impactful and ...

  15. Correlational Research

    A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. ... That helps you generalize your findings to real-life situations in an externally valid way. There are a few situations where correlational research is an appropriate choice.

  16. What are research designs?

    According to Jenkins-Smith, et al. (2017), a research design is the set of steps you take to collect and analyze your research data. In other words, it is the general plan to answer your research topic or question. ... External validity is the degree to which you can generalize the findings of your research study. It is determining whether or ...

  17. How to Write the Results/Findings Section in Research

    The Results/Findings section of a scientific research paper presents the core findings of a study derived from the methods. Examples & tips. 1-888-627-6631; [email protected]; ... the objectives of your research when choosing a structure for presenting your findings. Step 3: Design figures and tables to present and illustrate your data.

  18. (Pdf) the Research Design

    A research is valid when a conclusion is accurate or true and research design is the conceptual blueprint within which research is conducted. A scholar for his research, prepare an action plan, it ...

  19. (PDF) Research Design

    The design of a study defines the study type (descriptive, correlational, semi-experimental, experimental, review, meta-analytic) and sub-type (e.g., descriptive-longitudinal case study), research ...

  20. Why is research design important?

    In this research design, there's usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable. ... In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section.