An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
The Impact of COVID-19 on Education: A Meta-Narrative Review
Aras bozkurt, kadir karakaya, özlem karakaya, daniela castellanos-reyes.
- Author information
- Article notes
- Copyright and License information
Corresponding author.
Accepted 2022 Jun 22; Issue date 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
The rapid and unexpected onset of the COVID-19 global pandemic has generated a great degree of uncertainty about the future of education and has required teachers and students alike to adapt to a new normal to survive in the new educational ecology. Through this experience of the new educational ecology, educators have learned many lessons, including how to navigate through uncertainty by recognizing their strengths and vulnerabilities. In this context, the aim of this study is to conduct a bibliometric analysis of the publications covering COVID-19 and education to analyze the impact of the pandemic by applying the data mining and analytics techniques of social network analysis and text-mining. From the abstract, title, and keyword analysis of a total of 1150 publications, seven themes were identified: (1) the great reset, (2) shifting educational landscape and emerging educational roles (3) digital pedagogy, (4) emergency remote education, (5) pedagogy of care, (6) social equity, equality, and injustice, and (7) future of education. Moreover, from the citation analysis, two thematic clusters emerged: (1) educational response, emergency remote education affordances, and continuity of education, and (2) psychological impact of COVID-19. The overlap between themes and thematic clusters revealed researchers’ emphasis on guaranteeing continuity of education and supporting the socio-emotional needs of learners. From the results of the study, it is clear that there is a heightened need to develop effective strategies to ensure the continuity of education in the future, and that it is critical to proactively respond to such crises through resilience and flexibility.
Keywords: COVID-19, Coronavirus pandemic, Education during the pandemic, Teaching and learning in the new normal, Impact of the COVID-19 pandemic
Introduction
The Coronavirus (COVID-19) pandemic has proven to be a massive challenge for the entire world, imposing a radical transformation in many areas of life, including education. It was rapid and unexpected; the world was unprepared and hit hard. The virus is highly contagious, having a pathogenic nature whose effects have not been limited to humans alone, but rather, includes every construct and domain of societies, including education. The education system, which has been affected at all levels, has been required to respond to the crisis, forced to transition into emergency modes, and adapt to the unprecedented impact of the global crisis. Although the beginning of 2021 will mark nearly a year of experience in living through the pandemic, the crisis remains a phenomenon with many unknowns. A deeper and more comprehensive understanding of the changes that have been made in response to the crisis is needed to survive in these hard times. Hence, this study aims to provide a better understanding by examining the scholarly publications on COVID-19 and education. In doing this, we can identify our weaknesses and vulnerabilities, be better prepared for the new normal, and be more fit to survive.
Related Literature
Though the COVID-19 pandemic is not the first major disruption to be experienced in the history of the world, it has been unique due to its scale and the requirements that have been imposed because of it (Guitton, 2020 ). The economies of many countries have greatly suffered from the lockdowns and other restrictive measurements, and people have had to adapt to a new lifestyle, where their primary concern is to survive by keeping themselves safe from contracting the deadly virus. The education system has not been exempt from this series of unfortunate events inflicted by COVID-19. Since brick-and-mortar schools had to be closed due to the pandemic, millions of students, from those in K-12 to those in higher education, were deprived of physical access to their classrooms, peers, and teachers (Bozkurt & Sharma, 2020a , b ). This extraordinary pandemic period has posed arguably the most challenging and complex problems ever for educators, students, schools, educational institutions, parents, governments, and all other educational stakeholders. The closing of brick-and-mortar schools and campuses rendered online teaching and learning the only viable solution to the problem of access-to-education during this emergency period (Hodges et al., 2020 ). Due to the urgency of this move, teachers and instructors were rushed to shift all their face-to-face instruction and instructional materials to online spaces, such as learning management systems or electronic platforms, in order to facilitate teaching virtually at a distance. As a result of this sudden migration to learning and instruction online, the key distinctions between online education and education delivered online during such crisis and emergency circumstances have been obfuscated (Hodges et al., 2020 ).
State of the Current Relevant Literature
Although the scale of the impact of the COVID-19 global pandemic on education overshadows previously experienced nationwide or global crises or disruptions, the phenomenon of schools and higher education institutions having to shift their instruction to online spaces is not totally new to the education community and academia (Johnson et al., 2020 ). Prior literature on this subject indicates that in the past, schools and institutions resorted to online or electronic delivery of instruction in times of serious crises and uncertainties, including but not limited to natural disasters such as floods or earthquakes (e.g., Ayebi-Arthur, 2017 ; Lorenzo, 2008 ; Tull et al., 2017 ), local disruptions such as civil wars and socio-economic events such as political upheavals, social turmoils or economic recessions (e.g., Czerniewicz et al., 2019 ). Nevertheless, the past attempts to move learning and teaching online do not compare to the current efforts that have been implemented during the global COVID-19 pandemic, insofar as the past crisis situations were sporadic events in specific territories, affecting a limited population for relatively short periods of time. In contrast, the COVID-19 pandemic has continued to pose a serious threat to the continuity of education around the globe (Johnson et al., 2020 ).
Considering the scale and severity of the global pandemic, the impacts it has had on education in general and higher education in particular need to be explored and studied empirically so that necessary plans and strategies aimed at reducing its devastating effects can be developed and implemented. Due to the rapid onset and spread of the global pandemic, the current literature on the impact of COVID-19 on education is still limited, including mostly non-academic editorials or non-empirical personal reflections, anecdotes, reports, and stories (e.g., Baker, 2020 ; DePietro, 2020 ). Yet, with that said, empirical research on the impact of the global pandemic on higher education is rapidly growing. For example, Johnson et al. ( 2020 ), in their empirical study, found that faculty members who were struggling with various challenges adopted new instructional methods and strategies and adjusted certain course components to foster emergency remote education (ERE). Unger and Meiran ( 2020 ) observed that the pandemic made students in the US feel anxious about completing online learning tasks. In contrast, Suleri ( 2020 ) reported that a large majority of European higher education students were satisfied with their virtual learning experiences during the pandemic, and that most were willing to continue virtual higher education even after the pandemic (Suleri, 2020 ). The limited empirical research also points to the need for systematically planning and designing online learning experiences in advance in preparation for future outbreaks of such global pandemics and other crises (e.g., Korkmaz & Toraman, 2020 ). Despite the growing literature, the studies provide only fragmentary evidence on the impact of the pandemic on online learning and teaching. For a more thorough understanding of the serious implications the pandemic has for higher education in relation to learning and teaching online, more empirical research is needed.
Unlike previously conducted bibliometric analysis studies on this subject, which have largely involved general analysis of research on health sciences and COVID-19, Aristovnik et al. ( 2020 ) performed an in-depth bibliometric analysis of various science and social science research disciplines by examining a comprehensive database of document and source information. By the final phase of their bibliometric analysis, the authors had analyzed 16,866 documents. They utilized a mix of innovative bibliometric approaches to capture the existing research and assess the state of COVID-19 research across different research landscapes (e.g., health sciences, life sciences, physical sciences, social sciences, and humanities). Their findings showed that most COVID-19 research has been performed in the field of health sciences, followed by life sciences, physical sciences, and social sciences and humanities. Results from the keyword co-occurrence analysis revealed that health sciences research on COVID-19 tended to focus on health consequences, whereas the life sciences research on the subject tended to focus on drug efficiency. Moreover, physical sciences research tended to focus on environmental consequences, and social sciences and humanities research was largely oriented towards socio-economic consequences.
Similarly, Rodrigues et al. ( 2020 ) carried out a bibliometric analysis of COVID-19 related studies from a management perspective in order to elucidate how scientific research and education arrive at solutions to the pandemic crisis and the post-COVID-19 era. In line with Aristovnik et al.’s ( 2020 ) findings, Rodrigues et al. ( 2020 ) reported that most of the published research on this subject has fallen under the field of health sciences, leaving education as an under-researched area of inquiry. The content analysis they performed in their study also found a special emphasis on qualitative research. The descriptive and content analysis yielded two major strands of studies: (1) online education and (2) COVID-19 and education, business, economics, and management. The online education strand focused on the issue of technological anxiety caused by online classes, the feeling of belonging to an academic community, and feedback.
Lastly, Bond ( 2020 ) conducted a rapid review of K-12 research undertaken in the first seven months of the COVID-19 pandemic to identify successes and challenges and to offer recommendations for the future. From a search of K-12 research on the Web of Science, Scopus, EBSCOHost, the Microsoft Academic, and the COVID-19 living systematic map, 90 studies were identified and analyzed. The findings revealed that the reviewed research has focused predominantly on the challenges to shifting to ERE, teacher digital competencies and digital infrastructure, teacher ICT skills, parent engagement in learning, and students’ health and well-being. The review highlighted the need for straightforward communication between schools and families to inform families about learning activities and to promote interactivity between students. Teachers were also encouraged to develop their professional networks to increase motivation and support amongst themselves and to include opportunities for both synchronous and asynchronous interaction for promoting student engagement when using technology. Bond ( 2020 ) reported that the reviewed studies called for providing teachers with opportunities to further develop their digital technical competencies and their distance and online learning pedagogies. In a recent study that examines the impact of COVID-19 at higher education (Bozkurt, 2022 ), three broad themes from the body of research on this subject: (1) educational crisis and higher education in the new normal: resilience, adaptability, and sustainability, (2) psychological pressures, social uncertainty, and mental well-being of learners, and (3) the rise of online distance education and blended-hybrid modes. The findings of this study are similar to Mishra et al. ( 2021 ) who examined the COVID-19 pandemic from the lens of online distance education and noted that technologies for teaching and learning and psychosocial issues were emerging issues.
The aforementioned studies indicate that a great majority of research on COVID-19 has been produced in the field of health sciences, as expected. These studies nonetheless note that there is a noticeable shortage of studies dealing with the effects of the pandemic in the fields of social sciences, humanities, and education. Given the profound impact of the pandemic on learning and teaching, as well as on the related stakeholders in education, now more than ever, a greater amount of research on COVID-19 needs to be conducted in the field of education. The bibliometric studies discussed above have analyzed COVID-19 research across various fields, yielding a comparative snapshot of the research undertaken so far in different research spheres. However, despite being comprehensive, these studies did not appear to have examined a specific discipline or area of research in depth. Therefore, this bibliometric study aims to provide a focused, in-depth analysis of the COVID-19-related research in the field of education. In this regard, the main purpose of this study is to identify research patterns and trends in the field of education by examining COVID-19-related research papers. The study sought to answer the following research questions:
What are the thematic patterns in the title, abstract, and keywords of the publications on COVID-19 and education?
What are the citation trends in the references of the sampled publications on COVID-19 and education?
Methodology
This study used data mining and analytic approaches (Fayyad et al., 2002 ) to examine bibliometric patterns and trends. More specifically, social network analysis (SNA) (Hansen et al., 2020 ) was applied to examine the keywords and references, while text-mining was applied (Aggarwal & Zhai, 2012 ) to examine the titles and abstracts of the research corpus. Keywords represent the essence of an article at a micro level and for the analysis of the keywords, SNA was used. SNA “provides powerful ways to summarize networks and identify key people, [entities], or other objects that occupy strategic locations and positions within a matrix of links” (Hansen et al., 2020 , p. 6). In this regard, the keywords were analyzed based on their co-occurrences and visualized on a network graph by identifying the significant keywords which were demonstrated as nodes and their relationships were demonstrated with ties. For text-mining of the titles and abstracts, the researchers performed a lexical analysis that employs “two stages of co-occurrence information extraction—semantic and relational—using a different algorithm for each stage” (Smith & Humphreys, 2006 , p. 262). Thus, text-mining analysis enabled researchers to identify the hidden patterns and visualize them on a thematic concept map. For the analysis of the references, the researchers further used SNA based on the arguments that “citing articles and cited articles are linked to each other through invisible ties, and they collaboratively and collectively build an intellectual community that can be referred to as a living network, structure, or an ecology” (Bozkurt, 2019 , p. 498). The analysis of the references enabled the researchers to identify pivotal scholarly contributions that guided and shaped the intellectual landscape. The use of multiple approaches enables the study to present a broader view, or a meta-narrative.
Sample and Inclusion Criteria
The publications included in this research met the following inclusion criteria: (1) indexed by the Scopus database, (2) written in English, and (3) had the search queries on their title (Table 1 ). The search query reflects the focus on the impact of COVID-19 on education by including common words in the field like learn , teach , or student . Truncation was also used in the search to capture all relevant literature. Narrowing down the search allowed us to exclude publications that were not education related. Scopus was selected because it is one of the largest scholarly databases, and only publications in English were selected to facilitate identification of meaningful lexical patterns through text-mining and provide a condensed view of the research. The search yielded a total of 1150 papers (articles = 887, editorials = 66, notes = 58, conference papers = 56, letters = 40, review studies = 30, book chapters = 9, short surveys = 3, books = 1).
Search strings used to create research corpus
Data Analysis and Research Procedures
This study has two phases of analysis. In the first phase, text mining was used to analyze titles and abstracts, and SNA was applied to analyze keywords. By using two different analytical approaches, the authors were able to triangulate the research findings (Thurmond, 2001 ). In this phase, using lexical algorithms, text mining analysis enabled visualizing the textual data on a thematic concept map according to semantic relationships and co-occurrences of the words (Fig. 1 ). Text mining generated a machine-based concept map by analyzing the co-occurrences and lexical relationships of textual data. Then, based on the co-occurrences and centrality metrics, SNA enabled visualizing keywords on a network graphic called sociogram (Fig. 2 ). SNA allowed researchers to visually identify the key terms on a connected network graph where keywords are represented as nodes and their relationships are represented as edges. In the first phase of the study, by synthesizing outputs of the data mining and analytic approaches, meaningful patterns of textual data were presented as seven main research themes.
Thematic concept mapping of COVID-19 and education-related papers
Social networks analysis of the keywords in COVID-19 and education-related papers
In the second phase of the study, through the examination of the references and citation patterns (e.g., citing and being cited) of the articles in the research corpus, the citation patterns were visualized on a network graphic by clusters (See Fig. 3 ) showing also chronical relationships which enabled to identify pivotal COVID-19 studies. In the second phase of the study, two new themes were identified which were in line with the themes that emerged in the first phase of the study.
Social networks analysis of the references in COVID-19 and education-related papers 2019–2020 (Only the first authors were labeled – See Appendix Fig. 4 for SNA of references covering pre-COVID-19 period)
Strengths and Limitations
This study is one of the first attempts to use bibliometric approaches benefiting from data mining and analysis techniques to better understand COVID-19 and its consequences on published educational research. By applying such an approach, a large volume of data is able to be visualized and reported. However, besides these strengths, the study also has certain limitations. First, the study uses the Scopus database, which, though being one of the largest databases, does not include all types of publications. Therefore, the publications selected for this study offer only a partial view, as there are many significant publications in gray literature (e.g., reports, briefs, blogs). Second, the study includes only publications written in English, however, with COVID-19 being a global crisis, publications in different languages would provide a complementary view and be helpful in understanding local reflections in the field of education.
Findings and Discussion
Sna and text-mining: thematic patterns in the title, abstract, and keywords of the publications.
This section reports the findings based on a thematic concept map and network graphic that were developed through text mining (Fig. 1 —Textual data composed of 186.234 words visualized according to lexical relationships and co-occurrences) and sociograms created using SNA (Fig. 2 —The top 200 keywords with highest betweenness centrality and 1577 connections among them mapped on a network graph) to visualize the data. Accordingly, seven major themes were identified by analyzing the data through text-mining and SNA: (1) the great reset, (2) digital pedagogy, (3) shifting educational landscape and emerging educational roles, (4) emergency remote education, (5) pedagogy of care, (6) social equity, equality, and injustice, and (7) future of education.
Theme 1: The Great Reset (See path Fig. 1 : lockdown + emergency + community + challenges + during > pandemic and impact > outbreak > coronavirus > pandemic and global > crisis > pandemic > world; See nodes on Fig. 2 : Covid19, pandemic, Coronavirus, lockdown, crisis ). The first theme in the thematic concept map and network graphic is the Great Reset. It has been relatively a short time since the World Health Organization (WHO) declared the COVID-19 a pandemic. Although vaccination had already started, the pandemic continued to have an adverse impact on the world. Ever since the start of the pandemic, people were discussing when there would be a return to normal (Bozkurt & Sharma, 2020a , b ; Xiao, 2021 ); however, as time goes by, this hope has faded, and returning to normal appears to be far into the future (Schwab & Malleret, 2020 ). The pandemic is seen as a major milestone, in the sense that a macro reset in economic, social, geopolitical, environmental, and technological fields will produce multi-faceted changes affecting almost all aspects of life (Schwab & Malleret, 2020 ). The cover of an issue of the international edition of Time Magazine reflected this idea of a great reset and presented the COVID-19 pandemic as an opportunity to transform the way we live and work (Time, 2020 ). It has been argued that the pandemic will generate the emergence of a new era, and that we will have to adapt to the changes it produces (Bozkurt & Sharma, 2020 ). For example, the industrial sector quickly embraced remote work despite its challenges, and it is possible that most industrial companies will not return to the on-site working model even after the pandemic ends (Hern, 2020 ). We can expect a high rate of similar responses in other fields, including education, where COVID-19 has already reshaped our educational systems, the way we deliver education, and pedagogical approaches.
Theme 2: Digital pedagogy (See path on Fig. 1 : distance learning > research > teacher > development > need > training + technology + virtual > digital > communication > support > process > teaching > online > learning > online learning + course > faculty > students > experience ; See nodes on Fig. 2 : online learning, distance learning, computer-based learning, elearning, online education, distance education, online teaching, multimedia-based learning, technology, blended learning, online, digital transformation, ICT, online classes, flexible learning, technology-enhanced learning, digitalization ). Owing to the rapid transition to online education as a result of COVID-19, digital pedagogy and teachers’ competencies in information and communication technology (ICT) integration have gained greater prominence with the unprecedented challenges teachers have faced to adapt to remote teaching and learning. The COVID-19 pandemic has unquestionably manifested the need to prepare teachers to teach online, as most of them have been forced to assume ERE roles with inadequate preparation. Studies involving the use of SNA indicate a correspondence between adapting to a digital pedagogy and the need to equip teachers with greater competency in technology and online teaching (e.g., Blume, 2020 ; König et al., 2020 ). König et al. ( 2020 ) conducted a survey-based study investigating how early career teachers have adapted to online teaching during COVID-19 school closures. Their study found that while all the teachers maintained communication with students and their parents, introduced new learning content, and provided feedback, they lacked the ability to respond to challenges requiring ICT integration, such as those related to providing quality online teaching and to conducting assessments. Likewise, Blume ( 2020 ) noted that most teachers need to acquire digital skills to implement digitally-mediated pedagogy and communication more effectively. Both study findings point to the need for building ICT-related teaching and learning competencies in initial teacher education and teacher professional development. The findings from the SNA conducted in the present study are in line with the aforementioned findings in terms of keyword analysis and overlapping themes and nodes.
Theme 3: Shifting educational landscape and emerging educational roles (See path on Fig. 1 : future > education > role > Covid19; See nodes on Fig. 2 : higher education, education, student, curriculum, university, teachers, learning, professional development, teacher education, knowledge, readiness ). The role of technology in education and human learning has been essential during the COVID-19 pandemic. Technology has become a prerequisite for learning and teaching during the pandemic and will likely continue to be so after it. In the rapid shift to an unprecedented mode of learning and teaching, stakeholders have had to assume different roles in the educational landscape of the new normal. For example, in a comprehensive study involving the participation of over 30 K higher education students from 62 countries conducted by Aristovnik et al. ( 2020 ), it was found that students with certain socio-demographic characteristics (male, lower living standard, from Africa or Asia) were significantly less satisfied with the changes to work/life balance created by the COVID-19 pandemic, and that female students who were facing financial problems were generally more affected by COVID-19 in their emotional life and personal circumstances. Despite the challenges posed by the pandemic, there is likely to be carry over in the post-pandemic era of some of the educational changes made during the COVID-19 times. For example, traditional lecture-based teacher-centered classes may be replaced by more student-centered online collaborative classes (Zhu & Liu, 2020 ). This may require the development and proliferation of open educational platforms that allow access to high-quality educational materials (Bozkurt et al., 2020 ) and the adoption of new roles to survive in the learning ecologies informed by digital learning pedagogies. In common with the present study, the aforementioned studies (e.g., Aristovnik et al., 2020 ; König et al., 2020 ) call for more deliberate actions to improve teacher education programs by offering training on various teaching approaches, such as blended, hybrid, flexible, and online learning, to better prepare educators for emerging roles in the post-pandemic era.
Theme 4: Emergency remote education (see path Fig. 1 : higher education > university > student > experience > remote; See nodes on Fig. 2 : Covid19, pandemic, Coronavirus, higher education, education, school closure, emergency remote teaching, emergency remote learning ). Educational institutions have undergone a rapid shift to ERE in the wake of COVID-19 (Bozkurt & Sharma, 2020a ; Bozkurt et al., 2020 ; Hodges et al., 2020 ). Although ERE is viewed as similar to distance education, they are essentially different. That is, ERE is a prompt response measure to an emergency situation or unusual circumstances, such as a global pandemic or a civil war, for a temporary period of time, whereas distance education is a planned and systematic approach to instructional design and development grounded in educational theory and practice (Bozkurt & Sharma, 2020b ). Due to the urgent nature of situations requiring ERE, it may fall short in embracing the solid pedagogical learning and teaching principles represented by distance education (Hodges et al., 2020 ). The early implementations of ERE primarily involved synchronous video-conferencing sessions that sought to imitate in-person classroom instruction. It is worth noting that educators may have heavily relied on synchronous communication to overcome certain challenges, such as the lack of available materials and planned activities for asynchronous communication. Lockdowns and school closures, which turned homes into compulsory learning environments, have posed major challenges for families and students, including scheduling, device sharing, and learner engagement in a socially distanced home learning environment (Bond, 2020 ). For example, Shim and Lee ( 2020 ) conducted a qualitative study exploring university students’ ERE experiences and reported that students complained about network instability, unilateral interactions, and reduced levels of concentration. The SNA findings clearly highlight that there has been a focus on ERE due to the school closures during the COVID-19 pandemic. It is key to adopt the best practices of ERE and to utilize them regularly in distance education (Bozkurt, 2022 ). Moreover, it is important to note that unless clear distinctions are drawn between these two different forms of distance education or virtual instruction, a series of unfortunate events in education during these COVID-19 times is very likely to take place and lead to fatal errors in instructional practices and to poor student learning outcomes.
Theme 5: Pedagogy of care (See path Fig. 1 : r ole > education > Covid19 > care ; See nodes on Fig. 2 : Stress, anxiety, student wellbeing, coping, care, crisis management, depression ). The thematic concept map and network graphic show the psychological and emotional impact of the COVID-19 pandemic on various stakeholders, revealing that they have experienced anxiety, expressed the need for care, and sought coping strategies. A study by Baloran ( 2020 ), conducted in the southern part of the Philippines to examine college students’ knowledge, attitudes, anxiety, and personal coping strategies during the COVID-19 pandemic, found that the majority of the students experienced anxiety during the lockdown and worried about food security, financial resources, social contact, and large gatherings. It was reported that the students coped with this anxiety by following protective measures, chatting with family members and friends, and motivating themselves to have a positive attitude. In a similar study, Islam et al. ( 2020 ) conducted an investigation to determine whether Bangladeshi college students experienced anxiety and depression and the factors responsible for these emotional responses. Their cross-sectional survey-based study found that a large percentage of the participants had suffered from anxiety and depression during the pandemic. Academic and professional uncertainty, as well as financial insecurity, have been documented as factors contributing to the anxiety and depression among college students. Both studies point to the need for support mechanisms to be established by higher education institutions in order to ensure student wellbeing, provide them with care, and help them to cope with stress, anxiety, and depression. Talidong and Toquero ( 2020 ) reported that, in addition to students’ well-being and care, teachers’ perceptions and experiences of stress and anxiety during the quarantine period need to be taken into account. The authors found that teachers were worried about the safety of their loved ones and were susceptible to anxiety but tended to follow the preventive policies. A pedagogy of care has been presented as an approach that would effectively allow educators to plan more supportive teaching practices during the pandemic by fostering clear and prompt communication with students and their families and taking into consideration learner needs in lesson planning (e.g., Karakaya, 2021 ; Robinson et al., 2020 ). Here it is important to stress that a pedagogy of care is a multifaceted concept, one that involves the concepts of social equity, equality, and injustice.
Theme 6: Social equity, equality, and injustice (See path on Fig. 1 : Impact > outbreak > coronavirus > pandemic > social ; See nodes on Fig. 2 : Support, equity, social justice, digital divide, inequality, social support ). One of the more significant impacts of COVID-19 has been the deepening of the existing social injustices around the world (Oldekop et al., 2020 ; Williamson et al., 2020 ). Long-term school closures have deteriorated social bonds and adversely affected health issues, poverty, economy, food insecurity, and digital divide (Van Lancker & Parolin, 2020 ). Regarding the digital divide, there has been a major disparity in access to devices and data connectivity between high-income and low-income populations increasing the digital divide, social injustice, and inequality in the world (Bozkurt et al., 2020 ). In line with the SNA findings, the digital divide, manifesting itself most visibly in the inadequacy and insufficiency of digital devices and lack of high-speed Internet, can easily result in widespread inequalities. As such, the disparities between low and high socio-economic status families and school districts in terms of digital pedagogy inequality may deepen as teachers in affluent schools are more likely to offer a wide range of online learning activities and thereby secure better student engagement, participation, and interaction (Greenhow et al., 2020 ). These findings demonstrate that social inequities have been sharpened by the unfortunate disparities imposed by the COVID-19, thus requiring us to reimagine a future that mitigates such concerns.
Theme 7: Future of education (See word path on Fig. 1 : Future > education > Covid19 > pandemic > changes and pandemic > coronavirus, outbreak, impact > world ; See nodes on Fig. 2 : Sustainability, resilience, uncertainty, sdg4). Most significantly, COVID-19 the pandemic has shown the entire world that teachers and schools are invaluable resources and execute critical roles in society. Beyond that, with the compulsory changes resulting from the pandemic, it is evident that teaching and learning environments are not exclusive to brick-and-mortar classrooms. Digital technologies, being at the center of teaching and learning during the pandemic period, have been viewed as a pivotal agent in leveraging how learning takes place beyond the classroom walls (Quilter-Pinner & Ambrose, 2020 ). COVID-19 has made some concerns more visible. For example, the well-being of students, teachers, and society at large has gained more importance in these times of crisis. Furthermore, the need for educational technology and digital devices has compounded and amplified social inequities (Pelletier et al., 2021 ; West & Allen, 2020 ). Despite its global challenges, the need for technology and digital devices has highlighted some advantages that are likely to shape the future of education, particularly those related to the benefits of educational technology. For example, online learning could provide a more flexible, informal, self-paced learning environment for students (Adedoyin & Soykan, 2020 ). However, it also bears the risk of minimizing social interaction, as working in shared office environments has shifted to working alone in home-office settings. In this respect, the transformation of online education must involve a particular emphasis on sustaining interactivity through technology (Dwivedi et al., 2020 ). In view of the findings of the aforementioned studies, our text-mining and SNA findings suggest that the COVID-19 impositions may strongly shape the future of education and how learning takes place.
In summary, these themes extracted from the text-mining and SNA point to a significant milestone in the history of humanity, a multi-faceted reset that will affect many fields of life, from education and economics to sociology and lifestyle. The resulting themes have revealed that our natural response to an emerging worldwide situation shifted the educational landscape. The early response of the educational system was emergency-based and emphasized the continuance of in-person instruction via synchronous learning technologies. The subsequent response foregrounded the significance of digitally mediated learning pedagogy, related teacher competencies, and professional development. As various stakeholders (e.g., students, teachers, parents) have experienced a heightened level of anxiety and stress, an emerging strand of research has highlighted the need for care-based and trauma-informed pedagogies as a response to the side effects of the pandemic. In addition, as the global pandemic has made systemic impairments, such as social injustice and inequity, more visible, an important line of research has emerged on how social justice can be ensured given the challenges caused by the pandemic. Lastly, a sizable amount of research indicates that although the COVID-19 pandemic has imposed unprecedented challenges to our personal, educational, and social lives, it has also taught us how to respond to future crises in a timely, technologically-ready, pedagogically appropriate, and inclusive manner.
SNA: Citation Trends in the References of the Sampled Publications
The trends identified through SNA in citation patterns indicate two lines of thematic clusters (see Fig. 3 -A network graph depicting the citing and being cited patterns in the research corpus. Node sizes were defined by their citation count and betweenness centrality.). These clusters align with the results of the analysis of the titles, abstracts, and keywords of the sampled publications and forge the earlier themes (Theme 4: Emergency remote education and Theme 5: Pedagogy of care).
Thematic Cluster 1: The first cluster centers on the abilities of educational response, emergency remote education affordances, and continuity of education (Bozkurt & Sharma, 2020a ; Crawford et al., 2020 ; Hodges et al., 2020 ) to mitigate the impact of COVID-19 on education, especially for more vulnerable and disadvantaged groups (UNESCO, 2020 ; Viner et al., 2020 ). The thematic cluster one agrees with the theme four emergency remote education . The first trend line (See red line in Fig. 3 ) shows that the education system is vulnerable to external threats. Considering that interruption of education is not exclusive to pandemics – for example, political crises have also caused disruptions (Rapp et al., 2016 ) – it is clear that coping mechanisms are needed to ensure the continuity of education under all conditions. In this case, we need to reimagine and recalibrate education to make it resilient, flexible, and adaptive, not only to ensure the continuity of education, but also to ensure social justice, equity, and equality. Given that online education has its own limitations (e.g., it is restricted to online tools and infrastructures), we need to identify alternative entry points for those who do not have digital devices or lack access to the internet.
“What we teach in these times can have secondary importance. We have to keep in mind that students will remember not the educational content delivered, but how they felt during these hard times. With an empathetic approach, the story will not center on how to successfully deliver educational content, but it will be on how learners narrate these times” (p. iv).
Conclusion and Suggestions
The results from this study indicate that quick adaptability and flexibility have been key to surviving the substantial challenges generated by COVID-19. However, extreme demands on flexibility have taken a toll on human well-being and have exacerbated systemic issues like inequity and inequality. Using data mining that involved network analysis and text mining as analytical tools, this research provides a panoramic picture of the COVID-19-related themes educational researchers have addressed in their work. A sample of 1150 references yielded seven themes, which served to provide a comprehensive meta-narrative about COVID-19 and its impact on education.
A portion of the sampled publications focused on what we refer to as the great reset , highlighting the challenges that the emergency lockdown brought to the world. A publication pattern centered around digital pedagogy posited distance and online learning as key components and identified the need for teacher training. Given the need for adaptability, a third theme revealed the demand for professional development in higher education and a future shift in educational roles. It can be recommended that future research investigate institutional policy changes and the adaptation to these changes in renewed educational roles. The ERE theme centered on the lack of preparation in instituting the forced changes brought about by the COVID-19 pandemic. The publications related to this theme revealed that the COVID-19 pandemic uncovered silent threads in educational environments, like depression, inequality, and injustice. A pedagogy of care has been developed with the aim of reducing anxiety and providing support through coping strategies. These research patterns indicate that the future of education demands sustainability and resilience in the face of uncertainty.
Results of the thematic analysis of citation patterns (Fig. 3 ) overlapped with two of the themes found in our thematic concept map (Fig. 1 ) and network graphic (Fig. 2 ). It was shown that researchers have emphasized the continuity of education and the psychological effects of the COVID-19 crisis on learners. Creating coping strategies to deal with global crises (e.g., pandemics, political upheavals, natural disasters) has been shown to be a priority for educational researchers. The pedagogy of resilience (Purdue University Innovative learning, n.d. ) provides governments, institutions, and instructors with an alternative tool to applying to their contexts in the face of hardship. Furthermore, prioritizing the psychological long-term effects of the crisis in learners could alleviate achievement gaps. We recommend that researchers support grieving learners through care (Noddings, 1984 ) and trauma-informed pedagogy (Imad, 2020 ). Our resilience and empathy will reflect our preparedness for impending crises. The thematic analysis of citation patterns (1: educational response, emergency remote education affordances, and continuity of education; 2: psychological impact of COVID-19) further indicates suggestions for future instructional/learning designers. Freire ( 1985 ) argues that to transform the world we need to humanize it. Supporting that argument, the need for human-centered pedagogical approaches (Robinson et al., 2020 ) by considering learning a multifaceted process (Hodges et al., 2021 ) for well-designed learning experiences (Moore et al., 2021 ) is a requirement and instructional/learning designers have an important responsibility not only to design courses but an entire learning ecosystem where diversity, sensitivity, and inclusivity are prioritized.
ERE is not a representative feature in the field of online education or distance education but rather, a forced reaction to extraordinary circumstances in education. The increasing confusion between the practice of ERE and online learning could have catastrophic consequences in learners' outcomes, teachers' instructional practices, and institutional policies. Researchers, educators, and policymakers must work cooperatively and be guided by sound work in the field of distance learning to design nourishing educational environments that serve students’ best interests.
In this study, text mining and social network analysis were demonstrated to be powerful tools for exploring and visualizing patterns in COVID-19-related educational research. However, a more in-depth examination is still needed to synthesize effective strategies that can be used to support us in future crises. Systematic reviews that use classical manual coding techniques may take more time but increase our understanding of a phenomenon and help us to develop specific action plans. Future systematic reviews can use the seven themes identified in this study to analyze primary studies and find strategies that counteract the survival of the fittest mindset to ensure that no student is left behind.
Acknowledgements
This paper is dedicated to all educators and instructional/learning designers who ensured the continuity of education during the tough times of the COVID-19 pandemic.
This article is produced as a part of the 2020 AECT Mentoring Program.
SNA of references covering pre-COVID-19 period (Only the first authors were labeled)
Authors’ Contributions
AB: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Funding acquisition.; KK: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; MT: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; ÖK: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; DCR: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.
This paper is supported by Anadolu University, Scientific Research Commission with grant no: 2106E084.
Data Availability
The dataset is available from the authors upon request.
Declarations
Ethics approval and consent to participate.
This is a systematic review study and exempt from ethical approval.
Competing Interests
The authors declare no competing interests.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Aras Bozkurt, Email: [email protected].
Kadir Karakaya, Email: [email protected].
Murat Turk, Email: [email protected].
Özlem Karakaya, Email: [email protected].
Daniela Castellanos-Reyes, Email: [email protected].
- Adedoyin OB, Soykan E. Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments. 2020 doi: 10.1080/10494820.2020.1813180. [ DOI ] [ Google Scholar ]
- Aggarwal, C. C., & Zhai, C. (Eds.). (2012). Mining text data. Springer Science & Business Media. 10.1007/978-1-4614-3223-4
- Aristovnik A, Keržič D, Ravšelj D, Tomaževič N, Umek L. Impacts of the COVID-19 pandemic on life of higher education students: A global perspective. Sustainability. 2020;12(20):8438. doi: 10.3390/su12208438. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Ayebi-Arthur K. E-learning, resilience and change in higher education: Helping a university cope after a natural disaster. E-Learning and Digital Media. 2017;14(5):259–274. doi: 10.1177/2042753017751712. [ DOI ] [ Google Scholar ]
- Baker, V. L. (2020, March 25). How colleges can better help faculty during the pandemic . Inside Higher Ed. https://www.insidehighered.com/views/2020/03/25/recommendations-how-colleges-can-better-support-their-faculty-during-covid-19 . Accessed 15 Apr 2022
- Baloran ET. Knowledge, attitudes, anxiety, and coping strategies of students during COVID-19 pandemic. Journal of Loss and Trauma. 2020;25(8):635–642. doi: 10.1080/15325024.2020.1769300. [ DOI ] [ Google Scholar ]
- Beaunoyer E, Dupéré S, Guitton MJ. COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Computers in Human Behavior. 2020;111:106424. doi: 10.1016/j.chb.2020.106424. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Blume C. German Teachers’ Digital Habitus and Their Pandemic Pedagogy. Postdigital Science and Education. 2020;2(3):879–905. doi: 10.1007/s42438-020-00174-9. [ DOI ] [ Google Scholar ]
- Bond M. Schools and emergency remote education during the COVID-19 pandemic: A living rapid systematic review. Asian Journal of Distance Education. 2020;15(2):191–247. doi: 10.5281/zenodo.4425683. [ DOI ] [ Google Scholar ]
- Bozkurt A. Intellectual roots of distance education: A progressive knowledge domain analysis. Distance Education. 2019;40(4):497–514. doi: 10.1080/01587919.2019.1681894. [ DOI ] [ Google Scholar ]
- Bozkurt A. Resilience, adaptability, and sustainability of higher education: A systematic mapping study on the impact of the coronavirus (COVID-19) pandemic and the transition to the new normal. Journal of Learning for Development (JL4D) 2022;9(1):1–16. doi: 10.5281/zenodo.6370948. [ DOI ] [ Google Scholar ]
- Bozkurt A, Sharma RC. Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education. 2020;15(1):i–vi. doi: 10.5281/zenodo.3778083. [ DOI ] [ Google Scholar ]
- Bozkurt A, Sharma RC. Education in normal, new normal, and next normal: Observations from the past, insights from the present and projections for the future. Asian Journal of Distance Education. 2020;15(2):i–x. doi: 10.5281/zenodo.4362664. [ DOI ] [ Google Scholar ]
- Bozkurt A, Sharma RC. On the verge of a new renaissance: Care and empathy oriented, human-centered pandemic pedagogy. Asian Journal of Distance Education. 2021;16(1):i–vii. doi: 10.5281/zenodo.5070496. [ DOI ] [ Google Scholar ]
- Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, Lambert SR, Al-Freih M, Pete J, Olcott D, Jr, Rodes V, Aranciaga I, Bali M, Alvarez AV, Jr, Roberts J, Pazurek A, Raffaghelli JE, Panagiotou N, de Coëtlogon P, Shahadu S, Brown M, Asino TI, Tumwesige J, Ramírez Reyes T, Barrios Ipenza E, Ossiannilsson E, Bond M, Belhamel K, Irvine V, Sharma RC, Adam T, Janssen B, Sklyarova T, Olcott N, Ambrosino A, Lazou C, Mocquet B, Mano M, Paskevicius M. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1–126. doi: 10.5281/zenodo.3878572. [ DOI ] [ Google Scholar ]
- Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet. 2020;395(10227):912–920. doi: 10.1016/S0140-6736(20)30460-8. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Cao W, Fang Z, Hou G, Han M, Xu X, Dong J, Zheng J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research. 2020;287:112934. doi: 10.1016/j.psychres.2020.112934. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., ... & Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3 (1), 1–20. 10.37074/jalt.2020.3.1.7
- Czerniewicz L, Trotter H, Haupt G. Online teaching in response to student protests and campus shutdowns: Academics’ perspectives. International Journal of Educational Technology in Higher Education. 2019;16(1):43. doi: 10.1186/s41239-019-0170-1. [ DOI ] [ Google Scholar ]
- DePietro, A. (2020). Here’s a look at the impact of coronavirus (COVID-19) on colleges and universities in the U.S. Forbes. https://www.forbes.com/sites/andrewdepietro/2020/04/30/impact-coronavirus-covid-19-colleges-universities/?sh=20a7121461a6 . Accessed 15 Apr 2022
- Dwivedi YK, Hughes DL, Coombs C, Constantiou I, Duan Y, Edwards JS, Gupta B, Lal B, Misra S, Prashant P, Raman R, Rana NP, Sharma SK, Upadhyay N. Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management. 2020;55:102211. doi: 10.1016/j.ijinfomgt.2020.102211. [ DOI ] [ Google Scholar ]
- Fayyad U, Grinstein GG, Wierse A, editors. Information visualization in data mining and knowledge discovery. Morgan Kaufmann; 2002. [ Google Scholar ]
- Freire P. The politics of education: Culture, power and liberation. Bergin & Garvey; 1985. [ Google Scholar ]
- Greenhow C, Lewin C, Staud Willet KB. The educational response to Covid-19 across two countries: A critical examination of initial digital pedagogy adoption. Technology, Pedagogy and Education. 2020 doi: 10.1080/1475939X.2020.1866654. [ DOI ] [ Google Scholar ]
- Guitton MJ. Cyberpsychology research and COVID-19. Computers in Human Behavior. 2020;111:106357. doi: 10.1016/j.chb.2020.106357. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Hansen DL, Shneiderman B, Smith MA, Himelboim I. Analyzing social media networks with NodeXL: Insights from a connected world. 2. Morgan Kaufmann; 2020. [ Google Scholar ]
- Hern, A. (2020). Covid19 could cause permanent shift towards home working. The Guardian. http://www.miamidadetpo.org/library/2020-03-13-uk-covid19-could-cause-permanent-shift-towards-home-working.pdf . Accessed 15 Apr 2022
- Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between emergency remote teaching and online learning . EDUCAUSE Review. https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning . Accessed 15 Apr 2022
- Hodges, C. B., Moore, S. L., Lockee, B. B., Aaron Bond, M., Jewett, A. (2021). An Instructional Design Process for Emergency Remote Teaching. In Burgos, D., Tlili, A., Tabacco, A. (Eds), Radical Solutions for Education in a Crisis Context. Lecture Notes in Educational Technology (pp. 37–51). Singapore: Springer. 10.1007/978-981-15-7869-4_3
- Imad, M. (2020). Leveraging the neuroscience of now. Inside Higher Ed . https://www.insidehighered.com/advice/2020/06/03/seven-recommendations-helping-students-thrive-times-trauma . Accessed 15 Apr 2022
- Islam MA, Barna SD, Raihan H, Khan MNA, Hossain MT. Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: A web-based cross-sectional survey. PLoS ONE. 2020;15(8):e0238162. doi: 10.1371/journal.pone.0238162. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Johnson N, Veletsianos G, Seaman J. U.S. faculty and administrators’ experiences and approaches in the early weeks of the COVID-19 pandemic. Online Learning. 2020;24(2):6–21. doi: 10.24059/olj.v24i2.2285. [ DOI ] [ Google Scholar ]
- Karakaya K. Design considerations in emergency remote teaching during the COVID-19 pandemic: A human-centered approach. Education Technology Research and Development. 2021;69:295–299. doi: 10.1007/s11423-020-09884-0. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020;43(4):608–622. doi: 10.1080/02619768.2020.1809650. [ DOI ] [ Google Scholar ]
- Korkmaz G, Toraman Ç. Are we ready for the post-COVID-19 educational practice? An investigation into what educators think as to online learning. International Journal of Technology in Education and Science. 2020;4(4):293–309. doi: 10.46328/ijtes.v4i4.110. [ DOI ] [ Google Scholar ]
- Lorenzo G. The Sloan Semester. Journal of Asynchronous Learning Networks. 2008;12(2):5–40. doi: 10.24059/olj.v12i2.1693. [ DOI ] [ Google Scholar ]
- Mishra S, Sahoo S, Pandey S. Research trends in online distance learning during the COVID-19 pandemic. Distance Education. 2021;42(4):494–519. doi: 10.1080/01587919.2021.1986373. [ DOI ] [ Google Scholar ]
- Moore, S., Trust, T., Lockee, B. B., Bond, A., & Hodges, C. (2021). One year later... and counting: Reflections on emergency remote teaching and online learning. EDUCAUSE Review. https://er.educause.edu/articles/2021/11/one-year-later-and-counting-reflections-on-emergency-remote-teaching-and-online-learning . Accessed 15 Apr 2022
- Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. International Journal of Surgery, 78 , 185-193. 10.1016/j.ijsu.2020.04.018 [ DOI ] [ PMC free article ] [ PubMed ]
- Noddings N. Caring: A feminine approach to ethics. Moral Education; 1984. [ Google Scholar ]
- Oldekop, J. A., Horner, R., Hulme, D., Adhikari, R., Agarwal, B., ... Zheng, Y. (2020). Covid-19 and the case for global development. World Development, 134 , 105044. [ DOI ] [ PMC free article ] [ PubMed ]
- Pelletier, K., Brown, M., Brooks, D. C., McCormack, M., Reeves, J., Arbino, N., Bozkurt, A., Crawford, S., Czerniewicz, L., Gibson, R., Linder, K., Mason, J., & Mondelli, V. (2021). 2021 EDUCAUSE Horizon Report Teaching and Learning Edition . EDUCAUSE. https://www.learntechlib.org/p/219489/ . Accessed 15 Apr 2022
- Purdue University Innovative Learning. (n.d.). Hy-flex and resilient pedagogy resources. https://www.purdue.edu/innovativelearning/teaching-remotely/pedagogy.aspx . Accessed 15 Apr 2022
- Quilter-Pinner H, Ambrose A. The new normal: The future of education after Covid-19. The Institute for Public Policy Research; 2020. [ Google Scholar ]
- Rapp C, Gülbahar Y, Adnan M. e-Tutor: A multilingual open educational resource for faculty development to teach online. International Review of Research in Open and Distributed Learning. 2016;17(5):284–289. doi: 10.19173/irrodl.v17i5.2783. [ DOI ] [ Google Scholar ]
- Robinson H, Al-Freih M, Kilgore W. Designing with care: Towards a care-centered model for online learning design. The International Journal of Information and Learning Technology. 2020;37(3):99–108. doi: 10.1108/IJILT-10-2019-0098. [ DOI ] [ Google Scholar ]
- Rodrigues M, Franco M, Silva R. COVID-19 and Disruption in Management and Education Academics: Bibliometric Mapping and Analysis. Sustainability. 2020;12(18):7362. doi: 10.3390/su12187362. [ DOI ] [ Google Scholar ]
- Rose S. Medical student education in the time of COVID-19. JAMA. 2020;323(21):2131–2132. doi: 10.1001/jama.2020.5227. [ DOI ] [ PubMed ] [ Google Scholar ]
- Sahu, P. (2020). Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus, 12 (4). 10.7759/cureus.7541 [ DOI ] [ PMC free article ] [ PubMed ]
- Schwab M, Malleret T. Covid-19: The great reset. World Economic Forum; 2020. [ Google Scholar ]
- Shim TE, Lee SY. College students’ experience of emergency remote teaching due to COVID-19. Children and Youth Services Review. 2020;119:105578. doi: 10.1016/j.childyouth.2020.105578. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- Smith AE, Humphreys MS. Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping. Behavior Research Methods. 2006;38(2):262–279. doi: 10.3758/bf03192778. [ DOI ] [ PubMed ] [ Google Scholar ]
- Suleri J. Learners’ experience and expectations during and post COVID-19 in higher education. Research in Hospitality Management. 2020;10(2):91–96. doi: 10.1080/22243534.2020.1869463. [ DOI ] [ Google Scholar ]
- Talidong KJB, Toquero CMD. Philippine teachers’ practices to deal with anxiety amid COVID-19. Journal of Loss and Trauma. 2020;25(6–7):573–579. doi: 10.1080/15325024.2020.1759225. [ DOI ] [ Google Scholar ]
- Thurmond VA. The point of triangulation. Journal of Nursing Scholarship. 2001;33(3):253–258. doi: 10.1111/j.1547-5069.2001.00253.x. [ DOI ] [ PubMed ] [ Google Scholar ]
- Time (2020). The great reset: cover image. https://time.com/collection/great-reset/ . Accessed 15 Apr 2022
- Tull, S., Dabner, N., & Ayebi-Arthur, K. (2017). Social media and e-learning in response to seismic events: Resilient practices. Journal of Open, Flexible & Distance Learning , 21 (1), 63–76. http://www.jofdl.nz/index.php/JOFDL/article/view/405 . Accessed 15 Apr 2022
- UNESCO. (2020). COVID-19 education response. https://en.unesco.org/covid19/educationresponse/ . Accessed 15 Apr 2022
- Unger S, Meiran WR. Student attitudes towards online education during the COVID-19 viral outbreak of 2020: Distance learning in a time of social distance. International Journal of Technology in Education and Science. 2020;4(4):256–266. doi: 10.46328/ijtes.v4i4.107. [ DOI ] [ Google Scholar ]
- Van Lancker, W., & Parolin, Z. (2020). COVID-19, school closures, and child poverty: A social crisis in the making [published online ahead of print, 2020 Apr 7]. T he Lancet Public Health, 5 (5), e243–e244. 10.1016/S2468-2667(20)30084-0 [ DOI ] [ PMC free article ] [ PubMed ]
- Viner, R. M., Russell, S. J., Croker, H., Packer, J., Ward, J., Stansfield, C., ... & Booy, R. (2020). School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. The Lancet Child & Adolescent Health, 4 (5), 397-404. 10.1016/S2352-4642(20)30095-X [ DOI ] [ PMC free article ] [ PubMed ]
- West, D., & Allen, J. (2020). How to address inequality exposed by the COVID-19 pandemic. Tech Crunch . https://techcrunch.com/2020/10/27/how-to-address-inequality-exposed-by-the-covid-19-pandemic/ . Accessed 15 Apr 2022
- Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: Digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107–114. doi: 10.1080/17439884.2020.1761641. [ DOI ] [ Google Scholar ]
- Xiao, J. (2021). From equality to equity to justice: Should online education be the new normal in education?. In Bozkurt, A. (Eds.), Handbook of research on emerging pedagogies for the future of education: Trauma-informed, care, and pandemic pedagogy (pp. 1–15). IGI Global. 10.4018/978-1-7998-7275-7.ch001
- Zhu X, Liu J. Education in and after Covid-19: Immediate responses and long-term visions. Postdigital Science and Education. 2020;2:695–699. doi: 10.1007/s42438-020-00126-3. [ DOI ] [ Google Scholar ]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
- View on publisher site
- PDF (5.1 MB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
- View all journals
- Explore content
- About the journal
- Publish with us
- Sign up for alerts
- Published: 30 January 2023
A systematic review and meta-analysis of the evidence on learning during the COVID-19 pandemic
- Bastian A. Betthäuser ORCID: orcid.org/0000-0002-4544-4073 1 , 2 , 3 ,
- Anders M. Bach-Mortensen ORCID: orcid.org/0000-0001-7804-7958 2 &
- Per Engzell ORCID: orcid.org/0000-0002-2404-6308 3 , 4 , 5
Nature Human Behaviour volume 7 , pages 375–385 ( 2023 ) Cite this article
77k Accesses
175 Citations
1973 Altmetric
Metrics details
- Social policy
To what extent has the learning progress of school-aged children slowed down during the COVID-19 pandemic? A growing number of studies address this question, but findings vary depending on context. Here we conduct a pre-registered systematic review, quality appraisal and meta-analysis of 42 studies across 15 countries to assess the magnitude of learning deficits during the pandemic. We find a substantial overall learning deficit (Cohen’s d = −0.14, 95% confidence interval −0.17 to −0.10), which arose early in the pandemic and persists over time. Learning deficits are particularly large among children from low socio-economic backgrounds. They are also larger in maths than in reading and in middle-income countries relative to high-income countries. There is a lack of evidence on learning progress during the pandemic in low-income countries. Future research should address this evidence gap and avoid the common risks of bias that we identify.
Similar content being viewed by others
Elementary school teachers’ perspectives about learning during the COVID-19 pandemic
A methodological perspective on learning in the developing brain
Measuring and forecasting progress in education: what about early childhood?
The coronavirus disease 2019 (COVID-19) pandemic has led to one of the largest disruptions to learning in history. To a large extent, this is due to school closures, which are estimated to have affected 95% of the world’s student population 1 . But even when face-to-face teaching resumed, instruction has often been compromised by hybrid teaching, and by children or teachers having to quarantine and miss classes. The effect of limited face-to-face instruction is compounded by the pandemic’s consequences for children’s out-of-school learning environment, as well as their mental and physical health. Lockdowns have restricted children’s movement and their ability to play, meet other children and engage in extra-curricular activities. Children’s wellbeing and family relationships have also suffered due to economic uncertainties and conflicting demands of work, care and learning. These negative consequences can be expected to be most pronounced for children from low socio-economic family backgrounds, exacerbating pre-existing educational inequalities.
It is critical to understand the extent to which learning progress has changed since the onset of the COVID-19 pandemic. We use the term ‘learning deficit’ to encompass both a delay in expected learning progress, as well as a loss of skills and knowledge already gained. The COVID-19 learning deficit is likely to affect children’s life chances through their education and labour market prospects. At the societal level, it can have important implications for growth, prosperity and social cohesion. As policy-makers across the world are seeking to limit further learning deficits and to devise policies to recover learning deficits that have already been incurred, assessing the current state of learning is crucial. A careful assessment of the COVID-19 learning deficit is also necessary to weigh the true costs and benefits of school closures.
A number of narrative reviews have sought to summarize the emerging research on COVID-19 and learning, mostly focusing on learning progress relatively early in the pandemic 2 , 3 , 4 , 5 , 6 . Moreover, two reviews harmonized and synthesized existing estimates of learning deficits during the pandemic 7 , 8 . In line with the narrative reviews, these two reviews find a substantial reduction in learning progress during the pandemic. However, this finding is based on a relatively small number of studies (18 and 10 studies, respectively). The limited evidence that was available at the time these reviews were conducted also precluded them from meta-analysing variation in the magnitude of learning deficits over time and across subjects, different groups of students or country contexts.
In this Article, we conduct a systematic review and meta-analysis of the evidence on COVID-19 learning deficits 2.5 years into the pandemic. Our primary pre-registered research question was ‘What is the effect of the COVID-19 pandemic on learning progress amongst school-age children?’, and we address this question using evidence from studies examining changes in learning outcomes during the pandemic. Our second pre-registered research aim was ‘To examine whether the effect of the COVID-19 pandemic on learning differs across different social background groups, age groups, boys and girls, learning areas or subjects, national contexts’.
We contribute to the existing research in two ways. First, we describe and appraise the up-to-date body of evidence, including its geographic reach and quality. More specifically, we ask the following questions: (1) what is the state of the evidence, in terms of the available peer-reviewed research and grey literature, on learning progress of school-aged children during the COVID-19 pandemic?, (2) which countries are represented in the available evidence? and (3) what is the quality of the existing evidence?
Our second contribution is to harmonize, synthesize and meta-analyse the existing evidence, with special attention to variation across different subpopulations and country contexts. On the basis of the identified studies, we ask (4) to what extent has the learning progress of school-aged children changed since the onset of the pandemic?, (5) how has the magnitude of the learning deficit (if any) evolved since the beginning of the pandemic?, (6) to what extent has the pandemic reinforced inequalities between children from different socio-economic backgrounds?, (7) are there differences in the magnitude of learning deficits between subject domains (maths and reading) and between age groups (primary and secondary students)? and (8) to what extent does the magnitude of learning deficits vary across national contexts?
Below, we report our answers to each of these questions in turn. The questions correspond to the analysis plan set out in our pre-registered protocol ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021249944 ), but we have adjusted the order and wording to aid readability. We had planned to examine gender differences in learning progress during the pandemic, but found there to be insufficient evidence to conduct this subgroup analysis, as the large majority of the identified studies do not provide evidence on learning deficits separately by gender. We also planned to examine how the magnitude of learning deficits differs across groups of students with varying exposures to school closures. This was not possible as the available data on school closures lack sufficient depth with respect to variation of school closures within countries, across grade levels and with respect to different modes of instruction, to meaningfully examine this association.
The state of the evidence
Our systematic review identified 42 studies on learning progress during the COVID-19 pandemic that met our inclusion criteria. To be included in our systematic review and meta-analysis, studies had to use a measure of learning that can be standardized (using Cohen’s d ) and base their estimates on empirical data collected since the onset of the COVID-19 pandemic (rather than making projections based on pre-COVID-19 data). As shown in Fig. 1 , the initial literature search resulted in 5,153 hits after removal of duplicates. All studies were double screened by the first two authors. The formal database search process identified 15 eligible studies. We also hand searched relevant preprint repositories and policy databases. Further, to ensure that our study selection was as up to date as possible, we conducted two full forward and backward citation searches of all included studies on 15 February 2022, and on 8 August 2022. The citation and preprint hand searches allowed us to identify 27 additional eligible studies, resulting in a total of 42 studies. Most of these studies were published after the initial database search, which illustrates that the body of evidence continues to expand. Most studies provide multiple estimates of COVID-19 learning deficits, separately for maths and reading and for different school grades. The number of estimates ( n = 291) is therefore larger than the number of included studies ( n = 42).
Flow diagram of the study identification and selection process, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
The geographic reach of evidence is limited
Table 1 presents all included studies and estimates of COVID-19 learning deficits (in brackets), grouped by the 15 countries represented: Australia, Belgium, Brazil, Colombia, Denmark, Germany, Italy, Mexico, the Netherlands, South Africa, Spain, Sweden, Switzerland, the UK and the United States. About half of the estimates ( n = 149) are from the United States, 58 are from the UK, a further 70 are from other European countries and the remaining 14 estimates are from Australia, Brazil, Colombia, Mexico and South Africa. As this list shows, there is a strong over-representation of studies from high-income countries, a dearth of studies from middle-income countries and no studies from low-income countries. This skewed representation should be kept in mind when interpreting our synthesis of the existing evidence on COVID-19 learning deficits.
The quality of evidence is mixed
We assessed the quality of the evidence using an adapted version of the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) tool 9 . More specifically, we analysed the risk of bias of each estimate from confounding, sample selection, classification of treatments, missing data, the measurement of outcomes and the selection of reported results. A.M.B.-M. and B.A.B. performed the risk-of-bias assessments, which were independently checked by the respective other author. We then assigned each study an overall risk-of-bias rating (low, moderate, serious or critical) based on the estimate and domain with the highest risk of bias.
Figure 2a shows the distribution of all studies of COVID-19 learning deficits according to their risk-of-bias rating separately for each domain (top six rows), as well as the distribution of studies according to their overall risk of bias rating (bottom row). The overall risk of bias was considered ‘low’ for 15% of studies, ‘moderate’ for 30% of studies, ‘serious’ for 25% of studies and ‘critical’ for 30% of studies.
a , Domain-specific and overall distribution of studies of COVID-19 learning deficits by risk of bias rating using ROBINS-I, including studies rated to be at critical risk of bias ( n = 19 out of a total of n = 61 studies shown in this figure). In line with ROBINS-I guidance, studies rated to be at critical risk of bias were excluded from all analyses and other figures in this article and in the Supplementary Information (including b ). b , z curve: distribution of the z scores of all estimates included in the meta-analysis ( n = 291) to test for publication bias. The dotted line indicates z = 1.96 ( P = 0.050), the conventional threshold for statistical significance. The overlaid curve shows a normal distribution. The absence of a spike in the distribution of the z scores just above the threshold for statistical significance and the absence of a slump just below it indicate the absence of evidence for publication bias.
In line with ROBINS-I guidance, we excluded studies rated to be at critical risk of bias ( n = 19) from all of our analyses and figures, except for Fig. 2a , which visualizes the distribution of studies according to their risk of bias 9 . These are thus not part of the 42 studies included in our meta-analysis. Supplementary Table 2 provides an overview of these studies as well as the main potential sources of risk of bias. Moreover, in Supplementary Figs. 3 – 6 , we replicate all our results excluding studies deemed to be at serious risk of bias.
As shown in Fig. 2a , common sources of potential bias were confounding, sample selection and missing data. Studies rated at risk of confounding typically compared only two timepoints, without accounting for longer time trends in learning progress. The main causes of selection bias were the use of convenience samples and insufficient consideration of self-selection by schools or students. Several studies found evidence of selection bias, often with students from a low socio-economic background or schools in deprived areas being under-represented after (as compared with before) the pandemic, but this was not always adjusted for. Some studies also reported a higher amount of missing data post-pandemic, again generally without adjustment, and several studies did not report any information on missing data. For an overview of the risk-of-bias ratings for each domain of each study, see Supplementary Fig. 1 and Supplementary Tables 1 and 2 .
No evidence of publication bias
Publication bias can occur if authors self-censor to conform to theoretical expectations, or if journals favour statistically significant results. To mitigate this concern, we include not only published papers, but also preprints, working papers and policy reports.
Moreover, Fig. 2b tests for publication bias by showing the distribution of z -statistics for the effect size estimates of all identified studies. The dotted line indicates z = 1.96 ( P = 0.050), the conventional threshold for statistical significance. The overlaid curve shows a normal distribution. If there was publication bias, we would expect a spike just above the threshold, and a slump just below it. There is no indication of this. Moreover, we do not find a left-skewed distribution of P values (see P curve in Supplementary Fig. 2a ), or an association between estimates of learning deficits and their standard errors (see funnel plot in Supplementary Fig. 2b ) that would suggest publication bias. Publication bias thus does not appear to be a major concern.
Having assessed the quality of the existing evidence, we now present the substantive results of our meta-analysis, focusing on the magnitude of COVID-19 learning deficits and on the variation in learning deficits over time, across different groups of students, and across country contexts.
Learning progress slowed substantially during the pandemic
Figure 3 shows the effect sizes that we extracted from each study (averaged across grades and learning subject) as well as the pooled effect size (red diamond). Effects are expressed in standard deviations, using Cohen’s d . Estimates are pooled using inverse variance weights. The pooled effect size across all studies is d = −0.14, t (41) = −7.30, two-tailed P = 0.000, 95% confidence interval (CI) −0.17 to −0.10. Under normal circumstances, students generally improve their performance by around 0.4 standard deviations per school year 10 , 11 , 12 . Thus, the overall effect of d = −0.14 suggests that students lost out on 0.14/0.4, or about 35%, of a school year’s worth of learning. On average, the learning progress of school-aged children has slowed substantially during the pandemic.
Effect sizes are expressed in standard deviations, using Cohen’s d , with 95% CI, and are sorted by magnitude.
Learning deficits arose early in the pandemic and persist
One may expect that children were able to recover learning that was lost early in the pandemic, after teachers and families had time to adjust to the new learning conditions and after structures for online learning and for recovering early learning deficits were set up. However, existing research on teacher strikes in Belgium 13 and Argentina 14 , shortened school years in Germany 15 and disruptions to education during World War II 16 suggests that learning deficits are difficult to compensate and tend to persist in the long run.
Figure 4 plots the magnitude of estimated learning deficits (on the vertical axis) by the date of measurement (on the horizontal axis). The colour of the circles reflects the relevant country, the size of the circles indicates the sample size for a given estimate and the line displays a linear trend. The figure suggests that learning deficits opened up early in the pandemic and have neither closed nor substantially widened since then. We find no evidence that the slope coefficient is different from zero ( β months = −0.00, t (41) = −7.30, two-tailed P = 0.097, 95% CI −0.01 to 0.00). This implies that efforts by children, parents, teachers and policy-makers to adjust to the changed circumstance have been successful in preventing further learning deficits but so far have been unable to reverse them. As shown in Supplementary Fig. 8 , the pattern of persistent learning deficits also emerges within each of the three countries for which we have a relatively large number of estimates at different timepoints: the United States, the UK and the Netherlands. However, it is important to note that estimates of learning deficits are based on distinct samples of students. Future research should continue to follow the learning progress of cohorts of students in different countries to reveal how learning deficits of these cohorts have developed and continue to develop since the onset of the pandemic.
The horizontal axis displays the date on which learning progress was measured. The vertical axis displays estimated learning deficits, expressed in standard deviation (s.d.) using Cohen’s d . The colour of the circles reflects the respective country, the size of the circles indicates the sample size for a given estimate and the line displays a linear trend with a 95% CI. The trend line is estimated as a linear regression using ordinary least squares, with standard errors clustered at the study level ( n = 42 clusters). β months = −0.00, t (41) = −7.30, two-tailed P = 0.097, 95% CI −0.01 to 0.00.
Socio-economic inequality in education increased
Existing research on the development of learning gaps during summer vacations 17 , 18 , disruptions to schooling during the Ebola outbreak in Sierra Leone and Guinea 19 , and the 2005 earthquake in Pakistan 20 shows that the suspension of face-to-face teaching can increase educational inequality between children from different socio-economic backgrounds. Learning deficits during the COVID-19 pandemic are likely to have been particularly pronounced for children from low socio-economic backgrounds. These children have been more affected by school closures than children from more advantaged backgrounds 21 . Moreover, they are likely to be disadvantaged with respect to their access and ability to use digital learning technology, the quality of their home learning environment, the learning support they receive from teachers and parents, and their ability to study autonomously 22 , 23 , 24 .
Most studies we identify examine changes in socio-economic inequality during the pandemic, attesting to the importance of the issue. As studies use different measures of socio-economic background (for example, parental income, parental education, free school meal eligibility or neighbourhood disadvantage), pooling the estimates is not possible. Instead, we code all estimates according to whether they indicate a reduction, no change or an increase in learning inequality during the pandemic. Figure 5 displays this information. Estimates that indicate an increase in inequality are shown on the right, those that indicate a decrease on the left and those that suggest no change in the middle. Squares represent estimates of changes in inequality during the pandemic in reading performance, and circles represent estimates of changes in inequality in maths performance. The shading represents when in the pandemic educational inequality was measured, differentiating between the first, second and third year of the pandemic. Estimates are also arranged horizontally by grade level. A large majority of estimates indicate an increase in educational inequality between children from different socio-economic backgrounds. This holds for both maths and reading, across primary and secondary education, at each stage of the pandemic, and independently of how socio-economic background is measured.
Each circle/square refers to one estimate of over-time change in inequality in maths/reading performance ( n = 211). Estimates that find a decrease/no change/increase in inequality are grouped on the left/middle/right. Within these categories, estimates are ordered horizontally by school grade. The shading indicates when in the pandemic a given measure was taken.
Learning deficits are larger in maths than in reading
Available research on summer learning deficits 17 , 25 , student absenteeism 26 , 27 and extreme weather events 28 suggests that learning progress in mathematics is more dependent on formal instruction than in reading. This might be due to parents being better equipped to help their children with reading, and children advancing their reading skills (but not their maths skills) when reading for enjoyment outside of school. Figure 6a shows that, similarly to earlier disruptions to learning, the estimated learning deficits during the COVID-19 pandemic are larger for maths than for reading (mean difference δ = −0.07, t (41) = −4.02, two-tailed P = 0.000, 95% CI −0.11 to −0.04). This difference is statistically significant and robust to dropping estimates from individual countries (Supplementary Fig. 9 ).
Each plot shows the distribution of COVID-19 learning deficit estimates for the respective subgroup, with the box marking the interquartile range and the white circle denoting the median. Whiskers mark upper and lower adjacent values: the furthest observation within 1.5 interquartile range of either side of the box. a , Learning subject (reading versus maths). Median: reading −0.09, maths −0.18. Interquartile range: reading −0.15 to −0.02, maths −0.23 to −0.09. b , Level of education (primary versus secondary). Median: primary −0.12, secondary −0.12. Interquartile range: primary −0.19 to −0.05, secondary −0.21 to −0.06. c , Country income level (high versus middle). Median: high −0.12, middle −0.37. Interquartile range: high −0.20 to −0.05, middle −0.65 to −0.30.
No evidence of variation across grade levels
One may expect learning deficits to be smaller for older than for younger children, as older children may be more autonomous in their learning and better able to cope with a sudden change in their learning environment. However, older students were subject to longer school closures in some countries, such as Denmark 29 , based partly on the assumption that they would be better able to learn from home. This may have offset any advantage that older children would otherwise have had in learning remotely.
Figure 6b shows the distribution of estimates of learning deficits for students at the primary and secondary level, respectively. Our analysis yields no evidence of variation in learning deficits across grade levels (mean difference δ = −0.01, t (41) = −0.59, two-tailed P = 0.556, 95% CI −0.06 to 0.03). Due to the limited number of available estimates of learning deficits, we cannot be certain about whether learning deficits differ between primary and secondary students or not.
Learning deficits are larger in poorer countries
Low- and middle-income countries were already struggling with a learning crisis before the pandemic. Despite large expansions of the proportion of children in school, children in low- and middle-income countries still perform poorly by international standards, and inequality in learning remains high 30 , 31 , 32 . The pandemic is likely to deepen this learning crisis and to undo past progress. Schools in low- and middle-income countries have not only been closed for longer, but have also had fewer resources to facilitate remote learning 33 , 34 . Moreover, the economic resources, availability of digital learning equipment and ability of children, parents, teachers and governments to support learning from home are likely to be lower in low- and middle-income countries 35 .
As discussed above, most evidence on COVID-19 learning deficits comes from high-income countries. We found no studies on low-income countries that met our inclusion criteria, and evidence from middle-income countries is limited to Brazil, Colombia, Mexico and South Africa. Figure 6c groups the estimates of COVID-19 learning deficits in these four middle-income countries together (on the right) and compares them with estimates from high-income countries (on the left). The learning deficit is appreciably larger in middle-income countries than in high-income countries (mean difference δ = −0.29, t (41) = −2.78, two-tailed P = 0.008, 95% CI −0.50 to −0.08). In fact, the three largest estimates of learning deficits in our sample are from middle-income countries (Fig. 3 ) 36 , 37 , 38 .
Two years since the COVID-19 pandemic, there is a growing number of studies examining the learning progress of school-aged children during the pandemic. This paper first systematically reviews the existing literature on learning progress of school-aged children during the pandemic and appraises its geographic reach and quality. Second, it harmonizes, synthesizes and meta-analyses the existing evidence to examine the extent to which learning progress has changed since the onset of the pandemic, and how it varies across different groups of students and across country contexts.
Our meta-analysis suggests that learning progress has slowed substantially during the COVID-19 pandemic. The pooled effect size of d = −0.14, implies that students lost out on about 35% of a normal school year’s worth of learning. This confirms initial concerns that substantial learning deficits would arise during the pandemic 10 , 39 , 40 . But our results also suggest that fears of an accumulation of learning deficits as the pandemic continues have not materialized 41 , 42 . On average, learning deficits emerged early in the pandemic and have neither closed nor widened substantially. Future research should continue to follow the learning progress of cohorts of students in different countries to reveal how learning deficits of these cohorts have developed and continue to develop since the onset of the pandemic.
Most studies that we identify find that learning deficits have been largest for children from disadvantaged socio-economic backgrounds. This holds across different timepoints during the pandemic, countries, grade levels and learning subjects, and independently of how socio-economic background is measured. It suggests that the pandemic has exacerbated educational inequalities between children from different socio-economic backgrounds, which were already large before the pandemic 43 , 44 . Policy initiatives to compensate learning deficits need to prioritize support for children from low socio-economic backgrounds in order to allow them to recover the learning they lost during the pandemic.
There is a need for future research to assess how the COVID-19 pandemic has affected gender inequality in education. So far, there is very little evidence on this issue. The large majority of the studies that we identify do not examine learning deficits separately by gender.
Comparing estimates of learning deficits across subjects, we find that learning deficits tend to be larger in maths than in reading. As noted above, this may be due to the fact that parents and children have been in a better position to compensate school-based learning in reading by reading at home. Accordingly, there are grounds for policy initiatives to prioritize the compensation of learning deficits in maths and other science subjects.
A limitation of this study and the existing body of evidence on learning progress during the COVID-19 pandemic is that the existing studies primarily focus on high-income countries, while there is a dearth of evidence from low- and middle-income countries. This is particularly concerning because the small number of existing studies from middle-income countries suggest that learning deficits have been particularly severe in these countries. Learning deficits are likely to be even larger in low-income countries, considering that these countries already faced a learning crisis before the pandemic, generally implemented longer school closures, and were under-resourced and ill-equipped to facilitate remote learning 32 , 33 , 34 , 35 , 45 . It is critical that this evidence gap on low- and middle-income countries is addressed swiftly, and that the infrastructure to collect and share data on educational performance in middle- and low-income countries is strengthened. Collecting and making available these data is a key prerequisite for fully understanding how learning progress and related outcomes have changed since the onset of the pandemic 46 .
A further limitation is that about half of the studies that we identify are rated as having a serious or critical risk of bias. We seek to limit the risk of bias in our results by excluding all studies rated to be at critical risk of bias from all of our analyses. Moreover, in Supplementary Figs. 3 – 6 , we show that our results are robust to further excluding studies deemed to be at serious risk of bias. Future studies should minimize risk of bias in estimating learning deficits by employing research designs that appropriately account for common sources of bias. These include a lack of accounting for secular time trends, non-representative samples and imbalances between treatment and comparison groups.
The persistence of learning deficits two and a half years into the pandemic highlights the need for well-designed, well-resourced and decisive policy initiatives to recover learning deficits. Policy-makers, schools and families will need to identify and realize opportunities to complement and expand on regular school-based learning. Experimental evidence from low- and middle-income countries suggests that even relatively low-tech and low-cost learning interventions can have substantial, positive effects on students’ learning progress in the context of remote learning. For example, sending SMS messages with numeracy problems accompanied by short phone calls was found to lead to substantial learning gains in numeracy in Botswana 47 . Sending motivational text messages successfully limited learning losses in maths and Portuguese in Brazil 48 .
More evidence is needed to assess the effectiveness of other interventions for limiting or recovering learning deficits. Potential avenues include the use of the often extensive summer holidays to offer summer schools and learning camps, extending school days and school weeks, and organizing and scaling up tutoring programmes. Further potential lies in developing, advertising and providing access to learning apps, online learning platforms or educational TV programmes that are free at the point of use. Many countries have already begun investing substantial resources to capitalize on some of these opportunities. If these interventions prove effective, and if the momentum of existing policy efforts is maintained and expanded, the disruptions to learning during the pandemic may be a window of opportunity to improve the education afforded to children.
Eligibility criteria
We consider all types of primary research, including peer-reviewed publications, preprints, working papers and reports, for inclusion. To be eligible for inclusion, studies have to measure learning progress using test scores that can be standardized across studies using Cohen’s d . Moreover, studies have to be in English, Danish, Dutch, French, German, Norwegian, Spanish or Swedish.
Search strategy and study identification
We identified relevant studies using the following steps. First, we developed a Boolean search string defining the population (school-aged children), exposure (the COVID-19 pandemic) and outcomes of interest (learning progress). The full search string can be found in Section 1.1 of Supplementary Information . Second, we used this string to search the following academic databases: Coronavirus Research Database, the Education Resources Information Centre, International Bibliography of the Social Sciences, Politics Collection (PAIS index, policy file index, political science database and worldwide political science abstracts), Social Science Database, Sociology Collection (applied social science index and abstracts, sociological abstracts and sociology database), Cumulative Index to Nursing and Allied Health Literature, and Web of Science. Second, we hand-searched multiple preprint and working paper repositories (Social Science Research Network, Munich Personal RePEc Archive, IZA, National Bureau of Economic Research, OSF Preprints, PsyArXiv, SocArXiv and EdArXiv) and relevant policy websites, including the websites of the Organization for Economic Co-operation and Development, the United Nations, the World Bank and the Education Endowment Foundation. Third, we periodically posted our protocol via Twitter in order to crowdsource additional relevant studies not identified through the search. All titles and abstracts identified in our search were double-screened using the Rayyan online application 49 . Our initial search was conducted on 27 April 2021, and we conducted two forward and backward citation searches of all eligible studies identified in the above steps, on 14 February 2022, and on 8 August 2022, to ensure that our analysis includes recent relevant research.
Data extraction
From the studies that meet our inclusion criteria we extracted all estimates of learning deficits during the pandemic, separately for maths and reading and for different school grades. We also extracted the corresponding sample size, standard error, date(s) of measurement, author name(s) and country. Last, we recorded whether studies differentiate between children’s socio-economic background, which measure is used to this end and whether studies find an increase, decrease or no change in learning inequality. We contacted study authors if any of the above information was missing in the study. Data extraction was performed by B.A.B. and validated independently by A.M.B.-M., with discrepancies resolved through discussion and by conferring with P.E.
Measurement and standardizationr
We standardize all estimates of learning deficits during the pandemic using Cohen’s d , which expresses effect sizes in terms of standard deviations. Cohen’s d is calculated as the difference in the mean learning gain in a given subject (maths or reading) over two comparable periods before and after the onset of the pandemic, divided by the pooled standard deviation of learning progress in this subject:
Effect sizes expressed as β coefficients are converted to Cohen’s d :
We use a binary indicator for whether the study outcome is maths or reading. One study does not differentiate the outcome but includes a composite of maths and reading scores 50 .
Level of education
We distinguish between primary and secondary education. We first consulted the original studies for this information. Where this was not stated in a given study, students’ age was used in conjunction with information about education systems from external sources to determine the level of education 51 .
Country income level
We follow the World Bank’s classification of countries into four income groups: low, lower-middle, upper-middle and high income. Four countries in our sample are in the upper-middle-income group: Brazil, Colombia, Mexico and South Africa. All other countries are in the high-income group.
Data synthesis
We synthesize our data using three synthesis techniques. First, we generate a forest plot, based on all available estimates of learning progress during the pandemic. We pool estimates using a random-effects restricted maximum likelihood model and inverse variance weights to calculate an overall effect size (Fig. 3 ) 52 . Second, we code all estimates of changes in educational inequality between children from different socio-economic backgrounds during the pandemic, according to whether they indicate an increase, a decrease or no change in educational inequality. We visualize the resulting distribution using a harvest plot (Fig. 5 ) 53 . Third, given that the limited amount of available evidence precludes multivariate or causal analyses, we examine the bivariate association between COVID-19 learning deficits and the months in which learning was measured using a scatter plot (Fig. 4 ), and the bivariate association between COVID-19 learning deficits and subject, grade level and countries’ income level, using a series of violin plots (Fig. 6 ). The reported estimates, CIs and statistical significance tests of these bivariate associations are based on common-effects models with standard errors clustered by study, and two-sided tests. With respect to statistical tests reported, the data distribution was assumed to be normal, but this was not formally tested. The distribution of estimates of learning deficits is shown separately for the different moderator categories in Fig. 6 .
Pre-registration
We prospectively registered a protocol of our systematic review and meta-analysis in the International Prospective Register of Systematic Reviews (CRD42021249944) on 19 April 2021 ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021249944 ).
Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.
Data availability
The data used in the analyses for this manuscript were compiled by the authors based on the studies identified in the systematic review. The data are available on the Open Science Framework repository ( https://doi.org/10.17605/osf.io/u8gaz ). For our systematic review, we searched the following databases: Coronavirus Research Database ( https://proquest.libguides.com/covid19 ), Education Resources Information Centre database ( https://eric.ed.gov ), International Bibliography of the Social Sciences ( https://about.proquest.com/en/products-services/ibss-set-c/ ), Politics Collection ( https://about.proquest.com/en/products-services/ProQuest-Politics-Collection/ ), Social Science Database ( https://about.proquest.com/en/products-services/pq_social_science/ ), Sociology Collection ( https://about.proquest.com/en/products-services/ProQuest-Sociology-Collection/ ), Cumulative Index to Nursing and Allied Health Literature ( https://www.ebsco.com/products/research-databases/cinahl-database ) and Web of Science ( https://clarivate.com/webofsciencegroup/solutions/web-of-science/ ). We also searched the following preprint and working paper repositories: Social Science Research Network ( https://papers.ssrn.com/sol3/DisplayJournalBrowse.cfm ), Munich Personal RePEc Archive ( https://mpra.ub.uni-muenchen.de ), IZA ( https://www.iza.org/content/publications ), National Bureau of Economic Research ( https://www.nber.org/papers?page=1&perPage=50&sortBy=public_date ), OSF Preprints ( https://osf.io/preprints/ ), PsyArXiv ( https://psyarxiv.com ), SocArXiv ( https://osf.io/preprints/socarxiv ) and EdArXiv ( https://edarxiv.org ).
Code availability
All code needed to replicate our findings is available on the Open Science Framework repository ( https://doi.org/10.17605/osf.io/u8gaz ).
The Impact of COVID-19 on Children. UN Policy Briefs (United Nations, 2020).
Donnelly, R. & Patrinos, H. A. Learning loss during Covid-19: An early systematic review. Prospects (Paris) 51 , 601–609 (2022).
Hammerstein, S., König, C., Dreisörner, T. & Frey, A. Effects of COVID-19-related school closures on student achievement: a systematic review. Front. Psychol. https://doi.org/10.3389/fpsyg.2021.746289 (2021).
Panagouli, E. et al. School performance among children and adolescents during COVID-19 pandemic: a systematic review. Children 8 , 1134 (2021).
Article PubMed PubMed Central Google Scholar
Patrinos, H. A., Vegas, E. & Carter-Rau, R. An Analysis of COVID-19 Student Learning Loss (World Bank, 2022).
Zierer, K. Effects of pandemic-related school closures on pupils’ performance and learning in selected countries: a rapid review. Educ. Sci. 11 , 252 (2021).
Article Google Scholar
König, C. & Frey, A. The impact of COVID-19-related school closures on student achievement: a meta-analysis. Educ. Meas. Issues Pract. 41 , 16–22 (2022).
Storey, N. & Zhang, Q. A meta-analysis of COVID learning loss. Preprint at EdArXiv (2021).
Sterne, J. A. et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ https://doi.org/10.1136/bmj.i4919 (2016).
Azevedo, J. P., Hasan, A., Goldemberg, D., Iqbal, S. A. & Geven, K. Simulating the Potential Impacts of COVID-19 School Closures on Schooling and Learning Outcomes: A Set of Global Estimates (World Bank, 2020).
Bloom, H. S., Hill, C. J., Black, A. R. & Lipsey, M. W. Performance trajectories and performance gaps as achievement effect-size benchmarks for educational interventions. J. Res. Educ. Effectiveness 1 , 289–328 (2008).
Hill, C. J., Bloom, H. S., Black, A. R. & Lipsey, M. W. Empirical benchmarks for interpreting effect sizes in research. Child Dev. Perspect. 2 , 172–177 (2008).
Belot, M. & Webbink, D. Do teacher strikes harm educational attainment of students? Labour 24 , 391–406 (2010).
Jaume, D. & Willén, A. The long-run effects of teacher strikes: evidence from Argentina. J. Labor Econ. 37 , 1097–1139 (2019).
Cygan-Rehm, K. Are there no wage returns to compulsory schooling in Germany? A reassessment. J. Appl. Econ. 37 , 218–223 (2022).
Ichino, A. & Winter-Ebmer, R. The long-run educational cost of World War II. J. Labor Econ. 22 , 57–87 (2004).
Cooper, H., Nye, B., Charlton, K., Lindsay, J. & Greathouse, S. The effects of summer vacation on achievement test scores: a narrative and meta-analytic review. Rev. Educ. Res. 66 , 227–268 (1996).
Allington, R. L. et al. Addressing summer reading setback among economically disadvantaged elementary students. Read. Psychol. 31 , 411–427 (2010).
Smith, W. C. Consequences of school closure on access to education: lessons from the 2013–2016 Ebola pandemic. Int. Rev. Educ. 67 , 53–78 (2021).
Andrabi, T., Daniels, B. & Das, J. Human capital accumulation and disasters: evidence from the Pakistan earthquake of 2005. J. Hum. Resour . https://doi.org/10.35489/BSG-RISE-WP_2020/039 (2021).
Parolin, Z. & Lee, E. K. Large socio-economic, geographic and demographic disparities exist in exposure to school closures. Nat. Hum. Behav. 5 , 522–528 (2021).
Goudeau, S., Sanrey, C., Stanczak, A., Manstead, A. & Darnon, C. Why lockdown and distance learning during the COVID-19 pandemic are likely to increase the social class achievement gap. Nat. Hum. Behav. 5 , 1273–1281 (2021).
Article PubMed Google Scholar
Bailey, D. H., Duncan, G. J., Murnane, R. J. & Au Yeung, N. Achievement gaps in the wake of COVID-19. Educ. Researcher 50 , 266–275 (2021).
van de Werfhorst, H. G. Inequality in learning is a major concern after school closures. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2105243118 (2021).
Alexander, K. L., Entwisle, D. R. & Olson, L. S. Schools, achievement, and inequality: a seasonal perspective. Educ. Eval. Policy Anal. 23 , 171–191 (2001).
Aucejo, E. M. & Romano, T. F. Assessing the effect of school days and absences on test score performance. Econ. Educ. Rev. 55 , 70–87 (2016).
Gottfried, M. A. The detrimental effects of missing school: evidence from urban siblings. Am. J. Educ. 117 , 147–182 (2011).
Goodman, J. Flaking Out: Student Absences and Snow Days as Disruptions of Instructional Time (National Bureau of Economic Research, 2014).
Birkelund, J. F. & Karlson, K. B. No evidence of a major learning slide 14 months into the COVID-19 pandemic in Denmark. European Societies https://doi.org/10.1080/14616696.2022.2129085 (2022).
Angrist, N., Djankov, S., Goldberg, P. K. & Patrinos, H. A. Measuring human capital using global learning data. Nature 592 , 403–408 (2021).
Article CAS PubMed PubMed Central Google Scholar
Torche, F. in Social Mobility in Developing Countries: Concepts, Methods, and Determinants (eds Iversen, V., Krishna, A. & Sen, K.) 139–171 (Oxford Univ. Press, 2021).
World Development Report 2018: Learning to Realize Education’s Promise (World Bank, 2018).
Policy Brief: Education during COVID-19 and Beyond (United Nations, 2020).
One Year into COVID-19 Education Disruption: Where Do We Stand? (UNESCO, 2021).
Azevedo, J. P., Hasan, A., Goldemberg, D., Geven, K. & Iqbal, S. A. Simulating the potential impacts of COVID-19 school closures on schooling and learning outcomes: a set of global estimates. World Bank Res. Observer 36 , 1–40 (2021).
Google Scholar
Ardington, C., Wills, G. & Kotze, J. COVID-19 learning losses: early grade reading in South Africa. Int. J. Educ. Dev. 86 , 102480 (2021).
Hevia, F. J., Vergara-Lope, S., Velásquez-Durán, A. & Calderón, D. Estimation of the fundamental learning loss and learning poverty related to COVID-19 pandemic in Mexico. Int. J. Educ. Dev. 88 , 102515 (2022).
Lichand, G., Doria, C. A., Leal-Neto, O. & Fernandes, J. P. C. The impacts of remote learning in secondary education during the pandemic in Brazil. Nat. Hum. Behav. 6 , 1079–1086 (2022).
Major, L. E., Eyles, A., Machin, S. et al. Learning Loss since Lockdown: Variation across the Home Nations (Centre for Economic Performance, London School of Economics and Political Science, 2021).
Di Pietro, G., Biagi, F., Costa, P., Karpinski, Z. & Mazza, J. The Likely Impact of COVID-19 on Education: Reflections Based on the Existing Literature and Recent International Datasets (Publications Office of the European Union, 2020).
Fuchs-Schündeln, N., Krueger, D., Ludwig, A. & Popova, I. The Long-Term Distributional and Welfare Effects of COVID-19 School Closures (National Bureau of Economic Research, 2020).
Kaffenberger, M. Modelling the long-run learning impact of the COVID-19 learning shock: actions to (more than) mitigate loss. Int. J. Educ. Dev. 81 , 102326 (2021).
Attewell, P. & Newman, K. S. Growing Gaps: Educational Inequality around the World (Oxford Univ. Press, 2010).
Betthäuser, B. A., Kaiser, C. & Trinh, N. A. Regional variation in inequality of educational opportunity across europe. Socius https://doi.org/10.1177/23780231211019890 (2021).
Angrist, N. et al. Building back better to avert a learning catastrophe: estimating learning loss from covid-19 school shutdowns in africa and facilitating short-term and long-term learning recovery. Int. J. Educ. Dev. 84 , 102397 (2021).
Conley, D. & Johnson, T. Opinion: Past is future for the era of COVID-19 research in the social sciences. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2104155118 (2021).
Angrist, N., Bergman, P. & Matsheng, M. Experimental evidence on learning using low-tech when school is out. Nat. Hum. Behav. 6 , 941–950 (2022).
Lichand, G., Christen, J. & van Egeraat, E. Do Behavioral Nudges Work under Remote Learning? Evidence from Brazil during the Pandemic (Univ. Zurich, 2022).
Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5 , 1–10 (2016).
Tomasik, M. J., Helbling, L. A. & Moser, U. Educational gains of in-person vs. distance learning in primary and secondary schools: a natural experiment during the COVID-19 pandemic school closures in Switzerland. Int. J. Psychol. 56 , 566–576 (2021).
Eurybase: The Information Database on Education Systems in Europe (Eurydice, 2021).
Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1 , 97–111 (2010).
Ogilvie, D. et al. The harvest plot: a method for synthesising evidence about the differential effects of interventions. BMC Med. Res. Methodol. 8 , 1–7 (2008).
Gore, J., Fray, L., Miller, A., Harris, J. & Taggart, W. The impact of COVID-19 on student learning in New South Wales primary schools: an empirical study. Aust. Educ. Res. 48 , 605–637 (2021).
Gambi, L. & De Witte, K. The Resiliency of School Outcomes after the COVID-19 Pandemic: Standardised Test Scores and Inequality One Year after Long Term School Closures (FEB Research Report Department of Economics, 2021).
Maldonado, J. E. & De Witte, K. The effect of school closures on standardised student test outcomes. Br. Educ. Res. J. 48 , 49–94 (2021).
Vegas, E. COVID-19’s Impact on Learning Losses and Learning Inequality in Colombia (Center for Universal Education at Brookings, 2022).
Depping, D., Lücken, M., Musekamp, F. & Thonke, F. in Schule während der Corona-Pandemie. Neue Ergebnisse und Überblick über ein dynamisches Forschungsfeld (eds Fickermann, D. & Edelstein, B.) 51–79 (Münster & New York: Waxmann, 2021).
Ludewig, U. et al. Die COVID-19 Pandemie und Lesekompetenz von Viertklässler*innen: Ergebnisse der IFS-Schulpanelstudie 2016–2021 (Institut für Schulentwicklungsforschung, Univ. Dortmund, 2022).
Schult, J., Mahler, N., Fauth, B. & Lindner, M. A. Did students learn less during the COVID-19 pandemic? Reading and mathematics competencies before and after the first pandemic wave. Sch. Eff. Sch. Improv. https://doi.org/10.1080/09243453.2022.2061014 (2022).
Schult, J., Mahler, N., Fauth, B. & Lindner, M. A. Long-term consequences of repeated school closures during the COVID-19 pandemic for reading and mathematics competencies. Front. Educ. https://doi.org/10.3389/feduc.2022.867316 (2022).
Bazoli, N., Marzadro, S., Schizzerotto, A. & Vergolini, L. Learning Loss and Students’ Social Origins during the COVID-19 Pandemic in Italy (FBK-IRVAPP Working Papers 3, 2022).
Borgonovi, F. & Ferrara, A. The effects of COVID-19 on inequalities in educational achievement in Italy. Preprint at SSRN https://doi.org/10.2139/ssrn.4171968 (2022).
Contini, D., Di Tommaso, M. L., Muratori, C., Piazzalunga, D. & Schiavon, L. Who lost the most? Mathematics achievement during the COVID-19 pandemic. BE J. Econ. Anal. Policy 22 , 399–408 (2022).
Engzell, P., Frey, A. & Verhagen, M. D. Learning loss due to school closures during the COVID-19 pandemic. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022376118 (2021).
Haelermans, C. Learning Growth and Inequality in Primary Education: Policy Lessons from the COVID-19 Crisis (The European Liberal Forum (ELF)-FORES, 2021).
Haelermans, C. et al. A Full Year COVID-19 Crisis with Interrupted Learning and Two School Closures: The Effects on Learning Growth and Inequality in Primary Education (Maastricht Univ., Research Centre for Education and the Labour Market (ROA), 2021).
Haelermans, C. et al. Sharp increase in inequality in education in times of the COVID-19-pandemic. PLoS ONE 17 , e0261114 (2022).
Schuurman, T. M., Henrichs, L. F., Schuurman, N. K., Polderdijk, S. & Hornstra, L. Learning loss in vulnerable student populations after the first COVID-19 school closure in the Netherlands. Scand. J. Educ. Res. https://doi.org/10.1080/00313831.2021.2006307 (2021).
Arenas, A. & Gortazar, L. Learning Loss One Year after School Closures (Esade Working Paper, 2022).
Hallin, A. E., Danielsson, H., Nordström, T. & Fälth, L. No learning loss in Sweden during the pandemic evidence from primary school reading assessments. Int. J. Educ. Res. 114 , 102011 (2022).
Blainey, K. & Hannay, T. The Impact of School Closures on Autumn 2020 Attainment (RS Assessment from Hodder Education and SchoolDash, 2021).
Blainey, K. & Hannay, T. The Impact of School Closures on Spring 2021 Attainment (RS Assessment from Hodder Education and SchoolDash, 2021).
Blainey, K. & Hannay, T. The Effects of Educational Disruption on Primary School Attainment in Summer 2021 (RS Assessment from Hodder Education and SchoolDash, 2021).
Understanding Progress in the 2020/21 Academic Year: Complete Findings from the Autumn Term (London: Department for Education, 2021).
Understanding Progress in the 2020/21 Academic Year: Initial Findings from the Spring Term (London: Department for Education, 2021).
Impact of COVID-19 on Attainment: Initial Analysis (Brentford: GL Assessment, 2021).
Rose, S. et al. Impact of School Closures and Subsequent Support Strategies on Attainment and Socio-emotional Wellbeing in Key Stage 1: Interim Paper 1 (National Foundation for Educational Research (NFER) and Education Endowment Foundation (EEF) , 2021).
Rose, S. et al. Impact of School Closures and Subsequent Support Strategies on Attainment and Socio-emotional Wellbeing in Key Stage 1: Interim Paper 2 (National Foundation for Educational Research (NFER) and Education Endowment Foundation (EEF), 2021).
Weidmann, B. et al. COVID-19 Disruptions: Attainment Gaps and Primary School Responses (Education Endowment Foundation, 2021).
Bielinski, J., Brown, R. & Wagner, K. No Longer a Prediction: What New Data Tell Us About the Effects of 2020 Learning Disruptions (Illuminate Education, 2021).
Domingue, B. W., Hough, H. J., Lang, D. & Yeatman, J. Changing Patterns of Growth in Oral Reading Fluency During the COVID-19 Pandemic. PACE Working Paper (Policy Analysis for California Education, 2021).
Domingue, B. et al. The effect of COVID on oral reading fluency during the 2020–2021 academic year. AERA Open https://doi.org/10.1177/23328584221120254 (2022).
Kogan, V. & Lavertu, S. The COVID-19 Pandemic and Student Achievement on Ohio’s Third-Grade English Language Arts Assessment (Ohio State Univ., 2021).
Kogan, V. & Lavertu, S. How the COVID-19 Pandemic Affected Student Learning in Ohio: Analysis of Spring 2021 Ohio State Tests (Ohio State Univ., 2021).
Kozakowski, W., Gill, B., Lavallee, P., Burnett, A. & Ladinsky, J. Changes in Academic Achievement in Pittsburgh Public Schools during Remote Instruction in the COVID-19 Pandemic (Institute of Education Sciences (IES), US Department of Education, 2020).
Kuhfeld, M. & Lewis, K. Student Achievement in 2021–2022: Cause for Hope and Continued Urgency (NWEA, 2022).
Lewis, K., Kuhfeld, M., Ruzek, E. & McEachin, A. Learning during COVID-19: Reading and Math Achievement in the 2020–21 School Year (NWEA, 2021).
Locke, V. N., Patarapichayatham, C. & Lewis, S. Learning Loss in Reading and Math in US Schools Due to the COVID-19 Pandemic (Istation, 2021).
Pier, L., Christian, M., Tymeson, H. & Meyer, R. H. COVID-19 Impacts on Student Learning: Evidence from Interim Assessments in California. PACE Working Paper (Policy Analysis for California Education, 2021).
Download references
Acknowledgements
Carlsberg Foundation grant CF19-0102 (A.M.B.-M.); Leverhulme Trust Large Centre Grant (P.E.), the Swedish Research Council for Health, Working Life and Welfare (FORTE) grant 2016-07099 (P.E.); the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ programme LIEPP (ANR-11-LABX-0091 and ANR-11-IDEX-0005-02) and the Université Paris Cité IdEx (ANR-18-IDEX-0001) (P.E.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and affiliations.
Centre for Research on Social Inequalities (CRIS), Sciences Po, Paris, France
Bastian A. Betthäuser
Department of Social Policy and Intervention, University of Oxford, Oxford, UK
Bastian A. Betthäuser & Anders M. Bach-Mortensen
Nuffield College, University of Oxford, Oxford, UK
Bastian A. Betthäuser & Per Engzell
Social Research Institute, University College London, London, UK
Per Engzell
Swedish Institute for Social Research, Stockholm University, Stockholm, Sweden
You can also search for this author in PubMed Google Scholar
Contributions
B.A.B., A.M.B.-M. and P.E. designed the study; B.A.B., A.M.B.-M. and P.E. planned and implemented the search and screened studies; B.A.B., A.M.B.-M. and P.E. extracted relevant data from studies; B.A.B., A.M.B.-M. and P.E. conducted the quality appraisal; B.A.B., A.M.B.-M. and P.E. conducted the data analysis and visualization; B.A.B., A.M.B.-M. and P.E. wrote the manuscript.
Corresponding author
Correspondence to Bastian A. Betthäuser .
Ethics declarations
Competing interests.
The authors declare no competing interests.
Peer review
Peer review information.
Nature Human Behaviour thanks Guilherme Lichand, Sébastien Goudeau and Christoph König for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information.
Supplementary methods, results, figures, tables, PRISMA Checklist and references.
Reporting Summary
Peer review file, rights and permissions.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article.
Betthäuser, B.A., Bach-Mortensen, A.M. & Engzell, P. A systematic review and meta-analysis of the evidence on learning during the COVID-19 pandemic. Nat Hum Behav 7 , 375–385 (2023). https://doi.org/10.1038/s41562-022-01506-4
Download citation
Received : 24 June 2022
Accepted : 30 November 2022
Published : 30 January 2023
Issue Date : March 2023
DOI : https://doi.org/10.1038/s41562-022-01506-4
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Investigating the effect of covid-19 disruption in education using reds data.
- Alice Bertoletti
- Zbigniew Karpiński
Large-scale Assessments in Education (2024)
Innovate! Accelerate! Evaluate! Harnessing the RE-AIM framework to examine the global dissemination of parenting resources during COVID-19 to more than 210 million people
- Jamie M. Lachman
- Nisso Nurova
- Lucie Cluver
BMC Public Health (2024)
Language learning in the context of a global pandemic: proximal and distal factors matter
- Gerald F. Giesbrecht
- Marcel van de Wouw
- Catherine Lebel
Pediatric Research (2024)
Developmental Losses of Preschool Children Three Years into the COVID-19 Pandemic
- Alejandro Vásquez-Echeverría
- Meliza Gónzalez
- Sylvana M Côté
Prevention Science (2024)
School reopening concerns amid a pandemic among higher education students: a developing country perspective for policy development
- Manuel B. Garcia
Educational Research for Policy and Practice (2024)
Quick links
- Explore articles by subject
- Guide to authors
- Editorial policies
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Advertisement
The Impact of COVID-19 on Education: A Meta-Narrative Review
- Original Paper
- Published: 05 July 2022
- Volume 66 , pages 883–896, ( 2022 )
Cite this article
- Aras Bozkurt ORCID: orcid.org/0000-0002-4520-642X 1 , 2 , 3 ,
- Kadir Karakaya ORCID: orcid.org/0000-0003-3375-1532 4 ,
- Murat Turk ORCID: orcid.org/0000-0002-5105-2578 5 ,
- Özlem Karakaya ORCID: orcid.org/0000-0002-9950-481X 6 &
- Daniela Castellanos-Reyes ORCID: orcid.org/0000-0002-0183-1549 7
16k Accesses
51 Citations
52 Altmetric
Explore all metrics
The rapid and unexpected onset of the COVID-19 global pandemic has generated a great degree of uncertainty about the future of education and has required teachers and students alike to adapt to a new normal to survive in the new educational ecology. Through this experience of the new educational ecology, educators have learned many lessons, including how to navigate through uncertainty by recognizing their strengths and vulnerabilities. In this context, the aim of this study is to conduct a bibliometric analysis of the publications covering COVID-19 and education to analyze the impact of the pandemic by applying the data mining and analytics techniques of social network analysis and text-mining. From the abstract, title, and keyword analysis of a total of 1150 publications, seven themes were identified: (1) the great reset, (2) shifting educational landscape and emerging educational roles (3) digital pedagogy, (4) emergency remote education, (5) pedagogy of care, (6) social equity, equality, and injustice, and (7) future of education. Moreover, from the citation analysis, two thematic clusters emerged: (1) educational response, emergency remote education affordances, and continuity of education, and (2) psychological impact of COVID-19. The overlap between themes and thematic clusters revealed researchers’ emphasis on guaranteeing continuity of education and supporting the socio-emotional needs of learners. From the results of the study, it is clear that there is a heightened need to develop effective strategies to ensure the continuity of education in the future, and that it is critical to proactively respond to such crises through resilience and flexibility.
Similar content being viewed by others
The Impact of COVID-19 on Higher Education: A Systematic Literature Review of Pedagogical Approaches and Challenges
Learning from a Pandemic. The Impact of COVID-19 on Education Around the World
Effects of COVID-19 Pandemic on Higher Education. A Bibliometric Perspective
Explore related subjects.
- Digital Education and Educational Technology
Avoid common mistakes on your manuscript.
Introduction
The Coronavirus (COVID-19) pandemic has proven to be a massive challenge for the entire world, imposing a radical transformation in many areas of life, including education. It was rapid and unexpected; the world was unprepared and hit hard. The virus is highly contagious, having a pathogenic nature whose effects have not been limited to humans alone, but rather, includes every construct and domain of societies, including education. The education system, which has been affected at all levels, has been required to respond to the crisis, forced to transition into emergency modes, and adapt to the unprecedented impact of the global crisis. Although the beginning of 2021 will mark nearly a year of experience in living through the pandemic, the crisis remains a phenomenon with many unknowns. A deeper and more comprehensive understanding of the changes that have been made in response to the crisis is needed to survive in these hard times. Hence, this study aims to provide a better understanding by examining the scholarly publications on COVID-19 and education. In doing this, we can identify our weaknesses and vulnerabilities, be better prepared for the new normal, and be more fit to survive.
Related Literature
Though the COVID-19 pandemic is not the first major disruption to be experienced in the history of the world, it has been unique due to its scale and the requirements that have been imposed because of it (Guitton, 2020 ). The economies of many countries have greatly suffered from the lockdowns and other restrictive measurements, and people have had to adapt to a new lifestyle, where their primary concern is to survive by keeping themselves safe from contracting the deadly virus. The education system has not been exempt from this series of unfortunate events inflicted by COVID-19. Since brick-and-mortar schools had to be closed due to the pandemic, millions of students, from those in K-12 to those in higher education, were deprived of physical access to their classrooms, peers, and teachers (Bozkurt & Sharma, 2020a , b ). This extraordinary pandemic period has posed arguably the most challenging and complex problems ever for educators, students, schools, educational institutions, parents, governments, and all other educational stakeholders. The closing of brick-and-mortar schools and campuses rendered online teaching and learning the only viable solution to the problem of access-to-education during this emergency period (Hodges et al., 2020 ). Due to the urgency of this move, teachers and instructors were rushed to shift all their face-to-face instruction and instructional materials to online spaces, such as learning management systems or electronic platforms, in order to facilitate teaching virtually at a distance. As a result of this sudden migration to learning and instruction online, the key distinctions between online education and education delivered online during such crisis and emergency circumstances have been obfuscated (Hodges et al., 2020 ).
State of the Current Relevant Literature
Although the scale of the impact of the COVID-19 global pandemic on education overshadows previously experienced nationwide or global crises or disruptions, the phenomenon of schools and higher education institutions having to shift their instruction to online spaces is not totally new to the education community and academia (Johnson et al., 2020 ). Prior literature on this subject indicates that in the past, schools and institutions resorted to online or electronic delivery of instruction in times of serious crises and uncertainties, including but not limited to natural disasters such as floods or earthquakes (e.g., Ayebi-Arthur, 2017 ; Lorenzo, 2008 ; Tull et al., 2017 ), local disruptions such as civil wars and socio-economic events such as political upheavals, social turmoils or economic recessions (e.g., Czerniewicz et al., 2019 ). Nevertheless, the past attempts to move learning and teaching online do not compare to the current efforts that have been implemented during the global COVID-19 pandemic, insofar as the past crisis situations were sporadic events in specific territories, affecting a limited population for relatively short periods of time. In contrast, the COVID-19 pandemic has continued to pose a serious threat to the continuity of education around the globe (Johnson et al., 2020 ).
Considering the scale and severity of the global pandemic, the impacts it has had on education in general and higher education in particular need to be explored and studied empirically so that necessary plans and strategies aimed at reducing its devastating effects can be developed and implemented. Due to the rapid onset and spread of the global pandemic, the current literature on the impact of COVID-19 on education is still limited, including mostly non-academic editorials or non-empirical personal reflections, anecdotes, reports, and stories (e.g., Baker, 2020 ; DePietro, 2020 ). Yet, with that said, empirical research on the impact of the global pandemic on higher education is rapidly growing. For example, Johnson et al. ( 2020 ), in their empirical study, found that faculty members who were struggling with various challenges adopted new instructional methods and strategies and adjusted certain course components to foster emergency remote education (ERE). Unger and Meiran ( 2020 ) observed that the pandemic made students in the US feel anxious about completing online learning tasks. In contrast, Suleri ( 2020 ) reported that a large majority of European higher education students were satisfied with their virtual learning experiences during the pandemic, and that most were willing to continue virtual higher education even after the pandemic (Suleri, 2020 ). The limited empirical research also points to the need for systematically planning and designing online learning experiences in advance in preparation for future outbreaks of such global pandemics and other crises (e.g., Korkmaz & Toraman, 2020 ). Despite the growing literature, the studies provide only fragmentary evidence on the impact of the pandemic on online learning and teaching. For a more thorough understanding of the serious implications the pandemic has for higher education in relation to learning and teaching online, more empirical research is needed.
Unlike previously conducted bibliometric analysis studies on this subject, which have largely involved general analysis of research on health sciences and COVID-19, Aristovnik et al. ( 2020 ) performed an in-depth bibliometric analysis of various science and social science research disciplines by examining a comprehensive database of document and source information. By the final phase of their bibliometric analysis, the authors had analyzed 16,866 documents. They utilized a mix of innovative bibliometric approaches to capture the existing research and assess the state of COVID-19 research across different research landscapes (e.g., health sciences, life sciences, physical sciences, social sciences, and humanities). Their findings showed that most COVID-19 research has been performed in the field of health sciences, followed by life sciences, physical sciences, and social sciences and humanities. Results from the keyword co-occurrence analysis revealed that health sciences research on COVID-19 tended to focus on health consequences, whereas the life sciences research on the subject tended to focus on drug efficiency. Moreover, physical sciences research tended to focus on environmental consequences, and social sciences and humanities research was largely oriented towards socio-economic consequences.
Similarly, Rodrigues et al. ( 2020 ) carried out a bibliometric analysis of COVID-19 related studies from a management perspective in order to elucidate how scientific research and education arrive at solutions to the pandemic crisis and the post-COVID-19 era. In line with Aristovnik et al.’s ( 2020 ) findings, Rodrigues et al. ( 2020 ) reported that most of the published research on this subject has fallen under the field of health sciences, leaving education as an under-researched area of inquiry. The content analysis they performed in their study also found a special emphasis on qualitative research. The descriptive and content analysis yielded two major strands of studies: (1) online education and (2) COVID-19 and education, business, economics, and management. The online education strand focused on the issue of technological anxiety caused by online classes, the feeling of belonging to an academic community, and feedback.
Lastly, Bond ( 2020 ) conducted a rapid review of K-12 research undertaken in the first seven months of the COVID-19 pandemic to identify successes and challenges and to offer recommendations for the future. From a search of K-12 research on the Web of Science, Scopus, EBSCOHost, the Microsoft Academic, and the COVID-19 living systematic map, 90 studies were identified and analyzed. The findings revealed that the reviewed research has focused predominantly on the challenges to shifting to ERE, teacher digital competencies and digital infrastructure, teacher ICT skills, parent engagement in learning, and students’ health and well-being. The review highlighted the need for straightforward communication between schools and families to inform families about learning activities and to promote interactivity between students. Teachers were also encouraged to develop their professional networks to increase motivation and support amongst themselves and to include opportunities for both synchronous and asynchronous interaction for promoting student engagement when using technology. Bond ( 2020 ) reported that the reviewed studies called for providing teachers with opportunities to further develop their digital technical competencies and their distance and online learning pedagogies. In a recent study that examines the impact of COVID-19 at higher education (Bozkurt, 2022 ), three broad themes from the body of research on this subject: (1) educational crisis and higher education in the new normal: resilience, adaptability, and sustainability, (2) psychological pressures, social uncertainty, and mental well-being of learners, and (3) the rise of online distance education and blended-hybrid modes. The findings of this study are similar to Mishra et al. ( 2021 ) who examined the COVID-19 pandemic from the lens of online distance education and noted that technologies for teaching and learning and psychosocial issues were emerging issues.
The aforementioned studies indicate that a great majority of research on COVID-19 has been produced in the field of health sciences, as expected. These studies nonetheless note that there is a noticeable shortage of studies dealing with the effects of the pandemic in the fields of social sciences, humanities, and education. Given the profound impact of the pandemic on learning and teaching, as well as on the related stakeholders in education, now more than ever, a greater amount of research on COVID-19 needs to be conducted in the field of education. The bibliometric studies discussed above have analyzed COVID-19 research across various fields, yielding a comparative snapshot of the research undertaken so far in different research spheres. However, despite being comprehensive, these studies did not appear to have examined a specific discipline or area of research in depth. Therefore, this bibliometric study aims to provide a focused, in-depth analysis of the COVID-19-related research in the field of education. In this regard, the main purpose of this study is to identify research patterns and trends in the field of education by examining COVID-19-related research papers. The study sought to answer the following research questions:
What are the thematic patterns in the title, abstract, and keywords of the publications on COVID-19 and education?
What are the citation trends in the references of the sampled publications on COVID-19 and education?
Methodology
This study used data mining and analytic approaches (Fayyad et al., 2002 ) to examine bibliometric patterns and trends. More specifically, social network analysis (SNA) (Hansen et al., 2020 ) was applied to examine the keywords and references, while text-mining was applied (Aggarwal & Zhai, 2012 ) to examine the titles and abstracts of the research corpus. Keywords represent the essence of an article at a micro level and for the analysis of the keywords, SNA was used. SNA “provides powerful ways to summarize networks and identify key people, [entities], or other objects that occupy strategic locations and positions within a matrix of links” (Hansen et al., 2020 , p. 6). In this regard, the keywords were analyzed based on their co-occurrences and visualized on a network graph by identifying the significant keywords which were demonstrated as nodes and their relationships were demonstrated with ties. For text-mining of the titles and abstracts, the researchers performed a lexical analysis that employs “two stages of co-occurrence information extraction—semantic and relational—using a different algorithm for each stage” (Smith & Humphreys, 2006 , p. 262). Thus, text-mining analysis enabled researchers to identify the hidden patterns and visualize them on a thematic concept map. For the analysis of the references, the researchers further used SNA based on the arguments that “citing articles and cited articles are linked to each other through invisible ties, and they collaboratively and collectively build an intellectual community that can be referred to as a living network, structure, or an ecology” (Bozkurt, 2019 , p. 498). The analysis of the references enabled the researchers to identify pivotal scholarly contributions that guided and shaped the intellectual landscape. The use of multiple approaches enables the study to present a broader view, or a meta-narrative.
Sample and Inclusion Criteria
The publications included in this research met the following inclusion criteria: (1) indexed by the Scopus database, (2) written in English, and (3) had the search queries on their title (Table 1 ). The search query reflects the focus on the impact of COVID-19 on education by including common words in the field like learn , teach , or student . Truncation was also used in the search to capture all relevant literature. Narrowing down the search allowed us to exclude publications that were not education related. Scopus was selected because it is one of the largest scholarly databases, and only publications in English were selected to facilitate identification of meaningful lexical patterns through text-mining and provide a condensed view of the research. The search yielded a total of 1150 papers (articles = 887, editorials = 66, notes = 58, conference papers = 56, letters = 40, review studies = 30, book chapters = 9, short surveys = 3, books = 1).
Data Analysis and Research Procedures
This study has two phases of analysis. In the first phase, text mining was used to analyze titles and abstracts, and SNA was applied to analyze keywords. By using two different analytical approaches, the authors were able to triangulate the research findings (Thurmond, 2001 ). In this phase, using lexical algorithms, text mining analysis enabled visualizing the textual data on a thematic concept map according to semantic relationships and co-occurrences of the words (Fig. 1 ). Text mining generated a machine-based concept map by analyzing the co-occurrences and lexical relationships of textual data. Then, based on the co-occurrences and centrality metrics, SNA enabled visualizing keywords on a network graphic called sociogram (Fig. 2 ). SNA allowed researchers to visually identify the key terms on a connected network graph where keywords are represented as nodes and their relationships are represented as edges. In the first phase of the study, by synthesizing outputs of the data mining and analytic approaches, meaningful patterns of textual data were presented as seven main research themes.
Thematic concept mapping of COVID-19 and education-related papers
Social networks analysis of the keywords in COVID-19 and education-related papers
In the second phase of the study, through the examination of the references and citation patterns (e.g., citing and being cited) of the articles in the research corpus, the citation patterns were visualized on a network graphic by clusters (See Fig. 3 ) showing also chronical relationships which enabled to identify pivotal COVID-19 studies. In the second phase of the study, two new themes were identified which were in line with the themes that emerged in the first phase of the study.
Social networks analysis of the references in COVID-19 and education-related papers 2019–2020 (Only the first authors were labeled – See Appendix Fig. 4 for SNA of references covering pre-COVID-19 period)
Strengths and Limitations
This study is one of the first attempts to use bibliometric approaches benefiting from data mining and analysis techniques to better understand COVID-19 and its consequences on published educational research. By applying such an approach, a large volume of data is able to be visualized and reported. However, besides these strengths, the study also has certain limitations. First, the study uses the Scopus database, which, though being one of the largest databases, does not include all types of publications. Therefore, the publications selected for this study offer only a partial view, as there are many significant publications in gray literature (e.g., reports, briefs, blogs). Second, the study includes only publications written in English, however, with COVID-19 being a global crisis, publications in different languages would provide a complementary view and be helpful in understanding local reflections in the field of education.
Findings and Discussion
Sna and text-mining: thematic patterns in the title, abstract, and keywords of the publications.
This section reports the findings based on a thematic concept map and network graphic that were developed through text mining (Fig. 1 —Textual data composed of 186.234 words visualized according to lexical relationships and co-occurrences) and sociograms created using SNA (Fig. 2 —The top 200 keywords with highest betweenness centrality and 1577 connections among them mapped on a network graph) to visualize the data. Accordingly, seven major themes were identified by analyzing the data through text-mining and SNA: (1) the great reset, (2) digital pedagogy, (3) shifting educational landscape and emerging educational roles, (4) emergency remote education, (5) pedagogy of care, (6) social equity, equality, and injustice, and (7) future of education.
Theme 1: The Great Reset (See path Fig. 1 : lockdown + emergency + community + challenges + during > pandemic and impact > outbreak > coronavirus > pandemic and global > crisis > pandemic > world; See nodes on Fig. 2 : Covid19, pandemic, Coronavirus, lockdown, crisis ). The first theme in the thematic concept map and network graphic is the Great Reset. It has been relatively a short time since the World Health Organization (WHO) declared the COVID-19 a pandemic. Although vaccination had already started, the pandemic continued to have an adverse impact on the world. Ever since the start of the pandemic, people were discussing when there would be a return to normal (Bozkurt & Sharma, 2020a , b ; Xiao, 2021 ); however, as time goes by, this hope has faded, and returning to normal appears to be far into the future (Schwab & Malleret, 2020 ). The pandemic is seen as a major milestone, in the sense that a macro reset in economic, social, geopolitical, environmental, and technological fields will produce multi-faceted changes affecting almost all aspects of life (Schwab & Malleret, 2020 ). The cover of an issue of the international edition of Time Magazine reflected this idea of a great reset and presented the COVID-19 pandemic as an opportunity to transform the way we live and work (Time, 2020 ). It has been argued that the pandemic will generate the emergence of a new era, and that we will have to adapt to the changes it produces (Bozkurt & Sharma, 2020 ). For example, the industrial sector quickly embraced remote work despite its challenges, and it is possible that most industrial companies will not return to the on-site working model even after the pandemic ends (Hern, 2020 ). We can expect a high rate of similar responses in other fields, including education, where COVID-19 has already reshaped our educational systems, the way we deliver education, and pedagogical approaches.
Theme 2: Digital pedagogy (See path on Fig. 1 : distance learning > research > teacher > development > need > training + technology + virtual > digital > communication > support > process > teaching > online > learning > online learning + course > faculty > students > experience ; See nodes on Fig. 2 : online learning, distance learning, computer-based learning, elearning, online education, distance education, online teaching, multimedia-based learning, technology, blended learning, online, digital transformation, ICT, online classes, flexible learning, technology-enhanced learning, digitalization ). Owing to the rapid transition to online education as a result of COVID-19, digital pedagogy and teachers’ competencies in information and communication technology (ICT) integration have gained greater prominence with the unprecedented challenges teachers have faced to adapt to remote teaching and learning. The COVID-19 pandemic has unquestionably manifested the need to prepare teachers to teach online, as most of them have been forced to assume ERE roles with inadequate preparation. Studies involving the use of SNA indicate a correspondence between adapting to a digital pedagogy and the need to equip teachers with greater competency in technology and online teaching (e.g., Blume, 2020 ; König et al., 2020 ). König et al. ( 2020 ) conducted a survey-based study investigating how early career teachers have adapted to online teaching during COVID-19 school closures. Their study found that while all the teachers maintained communication with students and their parents, introduced new learning content, and provided feedback, they lacked the ability to respond to challenges requiring ICT integration, such as those related to providing quality online teaching and to conducting assessments. Likewise, Blume ( 2020 ) noted that most teachers need to acquire digital skills to implement digitally-mediated pedagogy and communication more effectively. Both study findings point to the need for building ICT-related teaching and learning competencies in initial teacher education and teacher professional development. The findings from the SNA conducted in the present study are in line with the aforementioned findings in terms of keyword analysis and overlapping themes and nodes.
Theme 3: Shifting educational landscape and emerging educational roles (See path on Fig. 1 : future > education > role > Covid19; See nodes on Fig. 2 : higher education, education, student, curriculum, university, teachers, learning, professional development, teacher education, knowledge, readiness ). The role of technology in education and human learning has been essential during the COVID-19 pandemic. Technology has become a prerequisite for learning and teaching during the pandemic and will likely continue to be so after it. In the rapid shift to an unprecedented mode of learning and teaching, stakeholders have had to assume different roles in the educational landscape of the new normal. For example, in a comprehensive study involving the participation of over 30 K higher education students from 62 countries conducted by Aristovnik et al. ( 2020 ), it was found that students with certain socio-demographic characteristics (male, lower living standard, from Africa or Asia) were significantly less satisfied with the changes to work/life balance created by the COVID-19 pandemic, and that female students who were facing financial problems were generally more affected by COVID-19 in their emotional life and personal circumstances. Despite the challenges posed by the pandemic, there is likely to be carry over in the post-pandemic era of some of the educational changes made during the COVID-19 times. For example, traditional lecture-based teacher-centered classes may be replaced by more student-centered online collaborative classes (Zhu & Liu, 2020 ). This may require the development and proliferation of open educational platforms that allow access to high-quality educational materials (Bozkurt et al., 2020 ) and the adoption of new roles to survive in the learning ecologies informed by digital learning pedagogies. In common with the present study, the aforementioned studies (e.g., Aristovnik et al., 2020 ; König et al., 2020 ) call for more deliberate actions to improve teacher education programs by offering training on various teaching approaches, such as blended, hybrid, flexible, and online learning, to better prepare educators for emerging roles in the post-pandemic era.
Theme 4: Emergency remote education (see path Fig. 1 : higher education > university > student > experience > remote; See nodes on Fig. 2 : Covid19, pandemic, Coronavirus, higher education, education, school closure, emergency remote teaching, emergency remote learning ). Educational institutions have undergone a rapid shift to ERE in the wake of COVID-19 (Bozkurt & Sharma, 2020a ; Bozkurt et al., 2020 ; Hodges et al., 2020 ). Although ERE is viewed as similar to distance education, they are essentially different. That is, ERE is a prompt response measure to an emergency situation or unusual circumstances, such as a global pandemic or a civil war, for a temporary period of time, whereas distance education is a planned and systematic approach to instructional design and development grounded in educational theory and practice (Bozkurt & Sharma, 2020b ). Due to the urgent nature of situations requiring ERE, it may fall short in embracing the solid pedagogical learning and teaching principles represented by distance education (Hodges et al., 2020 ). The early implementations of ERE primarily involved synchronous video-conferencing sessions that sought to imitate in-person classroom instruction. It is worth noting that educators may have heavily relied on synchronous communication to overcome certain challenges, such as the lack of available materials and planned activities for asynchronous communication. Lockdowns and school closures, which turned homes into compulsory learning environments, have posed major challenges for families and students, including scheduling, device sharing, and learner engagement in a socially distanced home learning environment (Bond, 2020 ). For example, Shim and Lee ( 2020 ) conducted a qualitative study exploring university students’ ERE experiences and reported that students complained about network instability, unilateral interactions, and reduced levels of concentration. The SNA findings clearly highlight that there has been a focus on ERE due to the school closures during the COVID-19 pandemic. It is key to adopt the best practices of ERE and to utilize them regularly in distance education (Bozkurt, 2022 ). Moreover, it is important to note that unless clear distinctions are drawn between these two different forms of distance education or virtual instruction, a series of unfortunate events in education during these COVID-19 times is very likely to take place and lead to fatal errors in instructional practices and to poor student learning outcomes.
Theme 5: Pedagogy of care (See path Fig. 1 : r ole > education > Covid19 > care ; See nodes on Fig. 2 : Stress, anxiety, student wellbeing, coping, care, crisis management, depression ). The thematic concept map and network graphic show the psychological and emotional impact of the COVID-19 pandemic on various stakeholders, revealing that they have experienced anxiety, expressed the need for care, and sought coping strategies. A study by Baloran ( 2020 ), conducted in the southern part of the Philippines to examine college students’ knowledge, attitudes, anxiety, and personal coping strategies during the COVID-19 pandemic, found that the majority of the students experienced anxiety during the lockdown and worried about food security, financial resources, social contact, and large gatherings. It was reported that the students coped with this anxiety by following protective measures, chatting with family members and friends, and motivating themselves to have a positive attitude. In a similar study, Islam et al. ( 2020 ) conducted an investigation to determine whether Bangladeshi college students experienced anxiety and depression and the factors responsible for these emotional responses. Their cross-sectional survey-based study found that a large percentage of the participants had suffered from anxiety and depression during the pandemic. Academic and professional uncertainty, as well as financial insecurity, have been documented as factors contributing to the anxiety and depression among college students. Both studies point to the need for support mechanisms to be established by higher education institutions in order to ensure student wellbeing, provide them with care, and help them to cope with stress, anxiety, and depression. Talidong and Toquero ( 2020 ) reported that, in addition to students’ well-being and care, teachers’ perceptions and experiences of stress and anxiety during the quarantine period need to be taken into account. The authors found that teachers were worried about the safety of their loved ones and were susceptible to anxiety but tended to follow the preventive policies. A pedagogy of care has been presented as an approach that would effectively allow educators to plan more supportive teaching practices during the pandemic by fostering clear and prompt communication with students and their families and taking into consideration learner needs in lesson planning (e.g., Karakaya, 2021 ; Robinson et al., 2020 ). Here it is important to stress that a pedagogy of care is a multifaceted concept, one that involves the concepts of social equity, equality, and injustice.
Theme 6: Social equity, equality, and injustice (See path on Fig. 1 : Impact > outbreak > coronavirus > pandemic > social ; See nodes on Fig. 2 : Support, equity, social justice, digital divide, inequality, social support ). One of the more significant impacts of COVID-19 has been the deepening of the existing social injustices around the world (Oldekop et al., 2020 ; Williamson et al., 2020 ). Long-term school closures have deteriorated social bonds and adversely affected health issues, poverty, economy, food insecurity, and digital divide (Van Lancker & Parolin, 2020 ). Regarding the digital divide, there has been a major disparity in access to devices and data connectivity between high-income and low-income populations increasing the digital divide, social injustice, and inequality in the world (Bozkurt et al., 2020 ). In line with the SNA findings, the digital divide, manifesting itself most visibly in the inadequacy and insufficiency of digital devices and lack of high-speed Internet, can easily result in widespread inequalities. As such, the disparities between low and high socio-economic status families and school districts in terms of digital pedagogy inequality may deepen as teachers in affluent schools are more likely to offer a wide range of online learning activities and thereby secure better student engagement, participation, and interaction (Greenhow et al., 2020 ). These findings demonstrate that social inequities have been sharpened by the unfortunate disparities imposed by the COVID-19, thus requiring us to reimagine a future that mitigates such concerns.
Theme 7: Future of education (See word path on Fig. 1 : Future > education > Covid19 > pandemic > changes and pandemic > coronavirus, outbreak, impact > world ; See nodes on Fig. 2 : Sustainability, resilience, uncertainty, sdg4). Most significantly, COVID-19 the pandemic has shown the entire world that teachers and schools are invaluable resources and execute critical roles in society. Beyond that, with the compulsory changes resulting from the pandemic, it is evident that teaching and learning environments are not exclusive to brick-and-mortar classrooms. Digital technologies, being at the center of teaching and learning during the pandemic period, have been viewed as a pivotal agent in leveraging how learning takes place beyond the classroom walls (Quilter-Pinner & Ambrose, 2020 ). COVID-19 has made some concerns more visible. For example, the well-being of students, teachers, and society at large has gained more importance in these times of crisis. Furthermore, the need for educational technology and digital devices has compounded and amplified social inequities (Pelletier et al., 2021 ; West & Allen, 2020 ). Despite its global challenges, the need for technology and digital devices has highlighted some advantages that are likely to shape the future of education, particularly those related to the benefits of educational technology. For example, online learning could provide a more flexible, informal, self-paced learning environment for students (Adedoyin & Soykan, 2020 ). However, it also bears the risk of minimizing social interaction, as working in shared office environments has shifted to working alone in home-office settings. In this respect, the transformation of online education must involve a particular emphasis on sustaining interactivity through technology (Dwivedi et al., 2020 ). In view of the findings of the aforementioned studies, our text-mining and SNA findings suggest that the COVID-19 impositions may strongly shape the future of education and how learning takes place.
In summary, these themes extracted from the text-mining and SNA point to a significant milestone in the history of humanity, a multi-faceted reset that will affect many fields of life, from education and economics to sociology and lifestyle. The resulting themes have revealed that our natural response to an emerging worldwide situation shifted the educational landscape. The early response of the educational system was emergency-based and emphasized the continuance of in-person instruction via synchronous learning technologies. The subsequent response foregrounded the significance of digitally mediated learning pedagogy, related teacher competencies, and professional development. As various stakeholders (e.g., students, teachers, parents) have experienced a heightened level of anxiety and stress, an emerging strand of research has highlighted the need for care-based and trauma-informed pedagogies as a response to the side effects of the pandemic. In addition, as the global pandemic has made systemic impairments, such as social injustice and inequity, more visible, an important line of research has emerged on how social justice can be ensured given the challenges caused by the pandemic. Lastly, a sizable amount of research indicates that although the COVID-19 pandemic has imposed unprecedented challenges to our personal, educational, and social lives, it has also taught us how to respond to future crises in a timely, technologically-ready, pedagogically appropriate, and inclusive manner.
SNA: Citation Trends in the References of the Sampled Publications
The trends identified through SNA in citation patterns indicate two lines of thematic clusters (see Fig. 3 -A network graph depicting the citing and being cited patterns in the research corpus. Node sizes were defined by their citation count and betweenness centrality.). These clusters align with the results of the analysis of the titles, abstracts, and keywords of the sampled publications and forge the earlier themes (Theme 4: Emergency remote education and Theme 5: Pedagogy of care).
Thematic Cluster 1: The first cluster centers on the abilities of educational response, emergency remote education affordances, and continuity of education (Bozkurt & Sharma, 2020a ; Crawford et al., 2020 ; Hodges et al., 2020 ) to mitigate the impact of COVID-19 on education, especially for more vulnerable and disadvantaged groups (UNESCO, 2020 ; Viner et al., 2020 ). The thematic cluster one agrees with the theme four emergency remote education . The first trend line (See red line in Fig. 3 ) shows that the education system is vulnerable to external threats. Considering that interruption of education is not exclusive to pandemics – for example, political crises have also caused disruptions (Rapp et al., 2016 ) – it is clear that coping mechanisms are needed to ensure the continuity of education under all conditions. In this case, we need to reimagine and recalibrate education to make it resilient, flexible, and adaptive, not only to ensure the continuity of education, but also to ensure social justice, equity, and equality. Given that online education has its own limitations (e.g., it is restricted to online tools and infrastructures), we need to identify alternative entry points for those who do not have digital devices or lack access to the internet.
Thematic Cluster 2: The second cluster centers on the psychological impact of COVID-19 on learners, who during these times suffered a sense of uncertainty (Bozkurt, & Sharma, 2021 ; Cao et al., 2020 ; Rose, 2020 ; Sahu, 2020 ) which suggest that learners are experiencing difficult times that can result in psychological and mental problems. The thematic cluster two agrees with theme five which is pedagogy of care . Therefore, it can be argued that learners' psychological and emotional states should be a top priority. Brooks et al. ( 2020 ) reported the potential of post-traumatic issues with long-lasting effects, on top of the trauma that has already been suffered during the COVID-19 pandemic. In other words, the effects of the COVID-19 crisis may prove to extend beyond their current state and add long-term challenges. Additionally, it has further been reported that the socio-economic effects of the pandemic (Nicola et al., 2020 ) may cause inequality and inequity in educational communities (Beaunoyer et al., 2020 ). The research also shows that learners’ achievement gaps are positively associated with psychological issues, while support and care are negatively associated with their traumatic states (Cao et al., 2020 ). In this context, the second thematic cluster reveals that researchers have seriously considered the psychological and emotional needs of learners in their publications. Care (Noddings, 1984 ) and that trauma-informed pedagogy (Imad, 2020 ) can be a guideline during and after the COVID-19 pandemic. It is quite clear that learners have experienced educational loss (e.g., drop-outs, achievement gaps, academic procrastination, etc.), as well as social and emotional impairments (e.g., fear, frustration, confusion, anxiety, sense of isolation, death of loved ones, etc.). Therefore, we need to critically approach the situation, focusing first on healing our social and emotional losses, and then, on the educational losses. As Bozkurt and Sharma ( 2020a ) put it:
“What we teach in these times can have secondary importance. We have to keep in mind that students will remember not the educational content delivered, but how they felt during these hard times. With an empathetic approach, the story will not center on how to successfully deliver educational content, but it will be on how learners narrate these times” (p. iv).
Conclusion and Suggestions
The results from this study indicate that quick adaptability and flexibility have been key to surviving the substantial challenges generated by COVID-19. However, extreme demands on flexibility have taken a toll on human well-being and have exacerbated systemic issues like inequity and inequality. Using data mining that involved network analysis and text mining as analytical tools, this research provides a panoramic picture of the COVID-19-related themes educational researchers have addressed in their work. A sample of 1150 references yielded seven themes, which served to provide a comprehensive meta-narrative about COVID-19 and its impact on education.
A portion of the sampled publications focused on what we refer to as the great reset , highlighting the challenges that the emergency lockdown brought to the world. A publication pattern centered around digital pedagogy posited distance and online learning as key components and identified the need for teacher training. Given the need for adaptability, a third theme revealed the demand for professional development in higher education and a future shift in educational roles. It can be recommended that future research investigate institutional policy changes and the adaptation to these changes in renewed educational roles. The ERE theme centered on the lack of preparation in instituting the forced changes brought about by the COVID-19 pandemic. The publications related to this theme revealed that the COVID-19 pandemic uncovered silent threads in educational environments, like depression, inequality, and injustice. A pedagogy of care has been developed with the aim of reducing anxiety and providing support through coping strategies. These research patterns indicate that the future of education demands sustainability and resilience in the face of uncertainty.
Results of the thematic analysis of citation patterns (Fig. 3 ) overlapped with two of the themes found in our thematic concept map (Fig. 1 ) and network graphic (Fig. 2 ). It was shown that researchers have emphasized the continuity of education and the psychological effects of the COVID-19 crisis on learners. Creating coping strategies to deal with global crises (e.g., pandemics, political upheavals, natural disasters) has been shown to be a priority for educational researchers. The pedagogy of resilience (Purdue University Innovative learning, n.d. ) provides governments, institutions, and instructors with an alternative tool to applying to their contexts in the face of hardship. Furthermore, prioritizing the psychological long-term effects of the crisis in learners could alleviate achievement gaps. We recommend that researchers support grieving learners through care (Noddings, 1984 ) and trauma-informed pedagogy (Imad, 2020 ). Our resilience and empathy will reflect our preparedness for impending crises. The thematic analysis of citation patterns (1: educational response, emergency remote education affordances, and continuity of education; 2: psychological impact of COVID-19) further indicates suggestions for future instructional/learning designers. Freire ( 1985 ) argues that to transform the world we need to humanize it. Supporting that argument, the need for human-centered pedagogical approaches (Robinson et al., 2020 ) by considering learning a multifaceted process (Hodges et al., 2021 ) for well-designed learning experiences (Moore et al., 2021 ) is a requirement and instructional/learning designers have an important responsibility not only to design courses but an entire learning ecosystem where diversity, sensitivity, and inclusivity are prioritized.
ERE is not a representative feature in the field of online education or distance education but rather, a forced reaction to extraordinary circumstances in education. The increasing confusion between the practice of ERE and online learning could have catastrophic consequences in learners' outcomes, teachers' instructional practices, and institutional policies. Researchers, educators, and policymakers must work cooperatively and be guided by sound work in the field of distance learning to design nourishing educational environments that serve students’ best interests.
In this study, text mining and social network analysis were demonstrated to be powerful tools for exploring and visualizing patterns in COVID-19-related educational research. However, a more in-depth examination is still needed to synthesize effective strategies that can be used to support us in future crises. Systematic reviews that use classical manual coding techniques may take more time but increase our understanding of a phenomenon and help us to develop specific action plans. Future systematic reviews can use the seven themes identified in this study to analyze primary studies and find strategies that counteract the survival of the fittest mindset to ensure that no student is left behind.
Data Availability
The dataset is available from the authors upon request.
Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments . https://doi.org/10.1080/10494820.2020.1813180
Article Google Scholar
Aggarwal, C. C., & Zhai, C. (Eds.). (2012). Mining text data. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-3223 -4
Aristovnik, A., Keržič, D., Ravšelj, D., Tomaževič, N., & Umek, L. (2020). Impacts of the COVID-19 pandemic on life of higher education students: A global perspective. Sustainability, 12 (20), 8438. https://doi.org/10.3390/su12208438
Ayebi-Arthur, K. (2017). E-learning, resilience and change in higher education: Helping a university cope after a natural disaster. E-Learning and Digital Media, 14 (5), 259–274. https://doi.org/10.1177/2042753017751712
Baker, V. L. (2020, March 25). How colleges can better help faculty during the pandemic . Inside Higher Ed. https://www.insidehighered.com/views/2020/03/25/recommendations-how-colleges-can-better-support-their-faculty-during-covid-19 . Accessed 15 Apr 2022
Baloran, E. T. (2020). Knowledge, attitudes, anxiety, and coping strategies of students during COVID-19 pandemic. Journal of Loss and Trauma, 25 (8), 635–642. https://doi.org/10.1080/15325024.2020.1769300
Beaunoyer, E., Dupéré, S., & Guitton, M. J. (2020). COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Computers in Human Behavior, 111 , 106424. https://doi.org/10.1016/j.chb.2020.106424
Blume, C. (2020). German Teachers’ Digital Habitus and Their Pandemic Pedagogy. Postdigital Science and Education, 2 (3), 879–905. https://doi.org/10.1007/s42438-020-00174-9
Bond, M. (2020). Schools and emergency remote education during the COVID-19 pandemic: A living rapid systematic review. Asian Journal of Distance Education, 15 (2), 191–247. https://doi.org/10.5281/zenodo.4425683
Bozkurt, A. (2019). Intellectual roots of distance education: A progressive knowledge domain analysis. Distance Education, 40 (4), 497–514. https://doi.org/10.1080/01587919.2019.1681894
Bozkurt, A. (2022). Resilience, adaptability, and sustainability of higher education: A systematic mapping study on the impact of the coronavirus (COVID-19) pandemic and the transition to the new normal. Journal of Learning for Development (JL4D), 9 (1), 1–16. https://doi.org/10.5281/zenodo.6370948
Bozkurt, A., & Sharma, R. C. (2020a). Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education, 15 (1), i–vi. https://doi.org/10.5281/zenodo.3778083
Bozkurt, A., & Sharma, R. C. (2020b). Education in normal, new normal, and next normal: Observations from the past, insights from the present and projections for the future. Asian Journal of Distance Education, 15 (2), i–x. https://doi.org/10.5281/zenodo.4362664
Bozkurt, A., & Sharma, R. C. (2021). On the verge of a new renaissance: Care and empathy oriented, human-centered pandemic pedagogy. Asian Journal of Distance Education, 16 (1), i–vii. https://doi.org/10.5281/zenodo.5070496
Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., Lambert, S. R., Al-Freih, M., Pete, J., Olcott, D., Jr., Rodes, V., Aranciaga, I., Bali, M., Alvarez, A. V., Jr., Roberts, J., Pazurek, A., Raffaghelli, J. E., Panagiotou, N., de Coëtlogon, P., … Paskevicius, M. (2020). A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15 (1), 1–126. https://doi.org/10.5281/zenodo.3878572
Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. The Lancet, 395 (10227), 912–920. https://doi.org/10.1016/S0140-6736(20)30460-8
Cao, W., Fang, Z., Hou, G., Han, M., Xu, X., Dong, J., & Zheng, J. (2020). The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research, 287 , 112934. https://doi.org/10.1016/j.psychres.2020.112934
Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., ... & Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3 (1), 1–20. https://doi.org/10.37074/jalt.2020.3.1.7
Czerniewicz, L., Trotter, H., & Haupt, G. (2019). Online teaching in response to student protests and campus shutdowns: Academics’ perspectives. International Journal of Educational Technology in Higher Education, 16 (1), 43. https://doi.org/10.1186/s41239-019-0170-1
DePietro, A. (2020). Here’s a look at the impact of coronavirus (COVID-19) on colleges and universities in the U.S. Forbes. https://www.forbes.com/sites/andrewdepietro/2020/04/30/impact-coronavirus-covid-19-colleges-universities/?sh=20a7121461a6 . Accessed 15 Apr 2022
Dwivedi, Y. K., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J. S., Gupta, B., Lal, B., Misra, S., Prashant, P., Raman, R., Rana, N. P., Sharma, S. K., & Upadhyay, N. (2020). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management, 55 , 102211. https://doi.org/10.1016/j.ijinfomgt.2020.102211
Fayyad, U., Grinstein, G. G., & Wierse, A. (Eds.). (2002). Information visualization in data mining and knowledge discovery . Morgan Kaufmann.
Google Scholar
Freire, P. (1985). The politics of education: Culture, power and liberation . Bergin & Garvey.
Book Google Scholar
Greenhow, C., Lewin, C., & Staud Willet, K. B. (2020). The educational response to Covid-19 across two countries: A critical examination of initial digital pedagogy adoption. Technology, Pedagogy and Education . https://doi.org/10.1080/1475939X.2020.1866654
Guitton, M. J. (2020). Cyberpsychology research and COVID-19. Computers in Human Behavior, 111 , 106357. https://doi.org/10.1016/j.chb.2020.106357
Hansen, D. L., Shneiderman, B., Smith, M. A., & Himelboim, I. (2020). Analyzing social media networks with NodeXL: Insights from a connected world (2nd ed.). Morgan Kaufmann.
Hern, A. (2020). Covid19 could cause permanent shift towards home working. The Guardian. http://www.miamidadetpo.org/library/2020-03-13-uk-covid19-could-cause-permanent-shift-towards-home-working.pdf . Accessed 15 Apr 2022
Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between emergency remote teaching and online learning . EDUCAUSE Review. https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning . Accessed 15 Apr 2022
Hodges, C. B., Moore, S. L., Lockee, B. B., Aaron Bond, M., Jewett, A. (2021). An Instructional Design Process for Emergency Remote Teaching. In Burgos, D., Tlili, A., Tabacco, A. (Eds), Radical Solutions for Education in a Crisis Context. Lecture Notes in Educational Technology (pp. 37–51). Singapore: Springer. https://doi.org/10.1007/978-981-15-7869-4_3
Imad, M. (2020). Leveraging the neuroscience of now. Inside Higher Ed . https://www.insidehighered.com/advice/2020/06/03/seven-recommendations-helping-students-thrive-times-trauma . Accessed 15 Apr 2022
Islam, M. A., Barna, S. D., Raihan, H., Khan, M. N. A., & Hossain, M. T. (2020). Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: A web-based cross-sectional survey. PLoS One, 15 (8), e0238162. https://doi.org/10.1371/journal.pone.0238162
Johnson, N., Veletsianos, G., & Seaman, J. (2020). U.S. faculty and administrators’ experiences and approaches in the early weeks of the COVID-19 pandemic. Online Learning, 24 (2), 6–21. https://doi.org/10.24059/olj.v24i2.2285
Karakaya, K. (2021). Design considerations in emergency remote teaching during the COVID-19 pandemic: A human-centered approach. Education Technology Research and Development, 69 , 295–299. https://doi.org/10.1007/s11423-020-09884-0
König, J., Jäger-Biela, D. J., & Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43 (4), 608–622. https://doi.org/10.1080/02619768.2020.1809650
Korkmaz, G., & Toraman, Ç. (2020). Are we ready for the post-COVID-19 educational practice? An investigation into what educators think as to online learning. International Journal of Technology in Education and Science, 4 (4), 293–309. https://doi.org/10.46328/ijtes.v4i4.110
Lorenzo, G. (2008). The Sloan Semester. Journal of Asynchronous Learning Networks, 12 (2), 5–40. https://doi.org/10.24059/olj.v12i2.1693
Mishra, S., Sahoo, S., & Pandey, S. (2021). Research trends in online distance learning during the COVID-19 pandemic. Distance Education, 42 (4), 494–519. https://doi.org/10.1080/01587919.2021.1986373
Moore, S., Trust, T., Lockee, B. B., Bond, A., & Hodges, C. (2021). One year later... and counting: Reflections on emergency remote teaching and online learning. EDUCAUSE Review. https://er.educause.edu/articles/2021/11/one-year-later-and-counting-reflections-on-emergency-remote-teaching-and-online-learning . Accessed 15 Apr 2022
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. International Journal of Surgery, 78 , 185-193. https://doi.org/10.1016/j.ijsu.2020.04.018
Noddings, N. (1984). Caring: A feminine approach to ethics . Moral Education.
Oldekop, J. A., Horner, R., Hulme, D., Adhikari, R., Agarwal, B., ... Zheng, Y. (2020). Covid-19 and the case for global development. World Development, 134 , 105044.
Pelletier, K., Brown, M., Brooks, D. C., McCormack, M., Reeves, J., Arbino, N., Bozkurt, A., Crawford, S., Czerniewicz, L., Gibson, R., Linder, K., Mason, J., & Mondelli, V. (2021). 2021 EDUCAUSE Horizon Report Teaching and Learning Edition . EDUCAUSE. https://www.learntechlib.org/p/219489/ . Accessed 15 Apr 2022
Purdue University Innovative Learning. (n.d.). Hy-flex and resilient pedagogy resources. https://www.purdue.edu/innovativelearning/teaching-remotely/pedagogy.aspx . Accessed 15 Apr 2022
Quilter-Pinner, H., & Ambrose, A. (2020). The new normal: The future of education after Covid-19 . The Institute for Public Policy Research.
Rapp, C., Gülbahar, Y., & Adnan, M. (2016). e-Tutor: A multilingual open educational resource for faculty development to teach online. International Review of Research in Open and Distributed Learning, 17 (5), 284–289. https://doi.org/10.19173/irrodl.v17i5.2783
Robinson, H., Al-Freih, M., & Kilgore, W. (2020). Designing with care: Towards a care-centered model for online learning design. The International Journal of Information and Learning Technology, 37 (3), 99–108. https://doi.org/10.1108/IJILT-10-2019-0098
Rodrigues, M., Franco, M., & Silva, R. (2020). COVID-19 and Disruption in Management and Education Academics: Bibliometric Mapping and Analysis. Sustainability, 12 (18), 7362. https://doi.org/10.3390/su12187362
Rose, S. (2020). Medical student education in the time of COVID-19. JAMA, 323 (21), 2131–2132. https://doi.org/10.1001/jama.2020.5227
Sahu, P. (2020). Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus, 12 (4). https://doi.org/10.7759/cureus.7541
Schwab, M., & Malleret, T. (2020). Covid-19: The great reset . World Economic Forum.
Shim, T. E., & Lee, S. Y. (2020). College students’ experience of emergency remote teaching due to COVID-19. Children and Youth Services Review, 119 , 105578. https://doi.org/10.1016/j.childyouth.2020.105578
Smith, A. E., & Humphreys, M. S. (2006). Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping. Behavior Research Methods, 38 (2), 262–279. https://doi.org/10.3758/bf03192778
Suleri, J. (2020). Learners’ experience and expectations during and post COVID-19 in higher education. Research in Hospitality Management, 10 (2), 91–96. https://doi.org/10.1080/22243534.2020.1869463
Talidong, K. J. B., & Toquero, C. M. D. (2020). Philippine teachers’ practices to deal with anxiety amid COVID-19. Journal of Loss and Trauma, 25 (6–7), 573–579. https://doi.org/10.1080/15325024.2020.1759225
Thurmond, V. A. (2001). The point of triangulation. Journal of Nursing Scholarship, 33 (3), 253–258. https://doi.org/10.1111/j.1547-5069.2001.00253.x
Time (2020). The great reset: cover image. https://time.com/collection/great-reset/ . Accessed 15 Apr 2022
Tull, S., Dabner, N., & Ayebi-Arthur, K. (2017). Social media and e-learning in response to seismic events: Resilient practices. Journal of Open, Flexible & Distance Learning , 21 (1), 63–76. http://www.jofdl.nz/index.php/JOFDL/article/view/405 . Accessed 15 Apr 2022
UNESCO. (2020). COVID-19 education response. https://en.unesco.org/covid19/educationresponse/ . Accessed 15 Apr 2022
Unger, S., & Meiran, W. R. (2020). Student attitudes towards online education during the COVID-19 viral outbreak of 2020: Distance learning in a time of social distance. International Journal of Technology in Education and Science, 4 (4), 256–266. https://doi.org/10.46328/ijtes.v4i4.107
Van Lancker, W., & Parolin, Z. (2020). COVID-19, school closures, and child poverty: A social crisis in the making [published online ahead of print, 2020 Apr 7]. T he Lancet Public Health, 5 (5), e243–e244. https://doi.org/10.1016/S2468-2667(20)30084-0
Viner, R. M., Russell, S. J., Croker, H., Packer, J., Ward, J., Stansfield, C., ... & Booy, R. (2020). School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. The Lancet Child & Adolescent Health, 4 (5), 397-404. https://doi.org/10.1016/S2352-4642(20)30095-X
West, D., & Allen, J. (2020). How to address inequality exposed by the COVID-19 pandemic. Tech Crunch . https://techcrunch.com/2020/10/27/how-to-address-inequality-exposed-by-the-covid-19-pandemic/ . Accessed 15 Apr 2022
Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: Digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology, 45 (2), 107–114. https://doi.org/10.1080/17439884.2020.1761641
Xiao, J. (2021). From equality to equity to justice: Should online education be the new normal in education?. In Bozkurt, A. (Eds.), Handbook of research on emerging pedagogies for the future of education: Trauma-informed, care, and pandemic pedagogy (pp. 1–15). IGI Global. https://doi.org/10.4018/978-1-7998-7275-7.ch001
Zhu, X., & Liu, J. (2020). Education in and after Covid-19: Immediate responses and long-term visions. Postdigital Science and Education, 2 , 695–699. https://doi.org/10.1007/s42438-020-00126-3
Download references
Acknowledgements
This paper is dedicated to all educators and instructional/learning designers who ensured the continuity of education during the tough times of the COVID-19 pandemic.
This article is produced as a part of the 2020 AECT Mentoring Program.
This paper is supported by Anadolu University, Scientific Research Commission with grant no: 2106E084.
Author information
Authors and affiliations.
Distance Education Department, Anadolu University, Eskişehir, Turkey
Aras Bozkurt
Department of English Studies, University of South Africa, Pretoria, South Africa
Anadolu Üniversitesi, Açıköğretim Fakültesi, Kat:7, Oda:702, 26470, Tepebaşı, Eskişehir, Turkey
Applied Linguistics & Technology Department, Iowa State University, Ames, IA, USA
Kadir Karakaya
Educational Psychology, Learning Sciences, University of Oklahoma, Norman, OK, USA
Educational Technology & Human-Computer Interaction, Iowa State University, Ames, IA, USA
Özlem Karakaya
Curriculum and Instruction, Learning Design and Technology, Purdue University, West Lafayette, IN, USA
Daniela Castellanos-Reyes
You can also search for this author in PubMed Google Scholar
Contributions
AB: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Funding acquisition.; KK: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; MT: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; ÖK: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.; DCR: Conceptualization, Investigation, Writing—Original Draft, Writing—Review & Editing.
Corresponding author
Correspondence to Aras Bozkurt .
Ethics declarations
Ethics approval and consent to participate.
This is a systematic review study and exempt from ethical approval.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
SNA of references covering pre-COVID-19 period (Only the first authors were labeled)
Rights and permissions
Reprints and permissions
About this article
Bozkurt, A., Karakaya, K., Turk, M. et al. The Impact of COVID-19 on Education: A Meta-Narrative Review. TechTrends 66 , 883–896 (2022). https://doi.org/10.1007/s11528-022-00759-0
Download citation
Accepted : 22 June 2022
Published : 05 July 2022
Issue Date : September 2022
DOI : https://doi.org/10.1007/s11528-022-00759-0
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Coronavirus pandemic
- Education during the pandemic
- Teaching and learning in the new normal
- Impact of the COVID-19 pandemic
- Find a journal
- Publish with us
- Track your research
IMAGES
VIDEO
COMMENTS
The COVID-19 pandemic has created the largest disruption of education systems in human history, affecting nearly 1.6 billion learners in more than 200 countries. Closures of schools, institutions and other learning spaces have impacted more than 94% of the world’s student population.
This article aims to provide a comprehensive report on the impact of the COVID-19 pandemic on online teaching and learning of various papers and indicate the way forward.
From the abstract, title, and keyword analysis of a total of 1150 publications, seven themes were identified: (1) the great reset, (2) shifting educational landscape and emerging educational roles (3) digital pedagogy, (4) emergency remote education, (5) pedagogy of care, (6) social equity, equality, and injustice, and (7) future of education.
dissertations that addressed the focus research question, “What are the effects of the COVID-19 pandemic on K–12 education?” The application of a concept mapping strategy enabled us to present common issues, concerns, and recommendations; prioritize outcomes across studies; and identify gaps in the literature for further investigation. As
This document synthesises the main findings of a rapid review of the literature relating to the effects on education of the Covid-19 pandemic. The objectives of this literature review are twofold.
The rapid and unexpected onset of the COVID-19 global pandemic has generated a great degree of uncertainty about the future of education and has required teachers and students alike to adapt to a new normal to survive in the new educational ecology.
The COVID-19 learning deficit is likely to affect children’s life chances through their education and labour market prospects. At the societal level, it can have important implications...
The COVID-19 pandemic has created the largest disruption of education systems in human history, affecting nearly 1.6 billion learners in more than 200 countries. Closures of schools, institutions and other learning spaces have impacted more than 94% of the world’s student population.
The rapid shift to online learning during the COVID-19 pandemic has significantly influenced educational practices worldwide and increased the use of online learning platforms. This systematic review examines the impact of online learning on student engagement and performance, providing a comprehensive analysis of existing studies. Using the Preferred Reporting Items for Systematic review and ...
The Impact of COVID-19 on Education: A Meta-Narrative Review. Original Paper. Published: 05 July 2022. Volume 66, pages 883–896, (2022) Cite this article. Download PDF. Aras Bozkurt, Kadir Karakaya, Murat Turk, Özlem Karakaya & Daniela Castellanos-Reyes. 16k Accesses. 51 Citations. 52 Altmetric. 4 Mentions. Explore all metrics. Abstract.