Skip to content

Read the latest news stories about Mailman faculty, research, and events. 

Departments

We integrate an innovative skills-based curriculum, research collaborations, and hands-on field experience to prepare students.

Learn more about our research centers, which focus on critical issues in public health.

Our Faculty

Meet the faculty of the Mailman School of Public Health. 

Become a Student

Life and community, how to apply.

Learn how to apply to the Mailman School of Public Health. 

Content Analysis

Content analysis is a research tool used to determine the presence of certain words, themes, or concepts within some given qualitative data (i.e. text). Using content analysis, researchers can quantify and analyze the presence, meanings, and relationships of such certain words, themes, or concepts. As an example, researchers can evaluate language used within a news article to search for bias or partiality. Researchers can then make inferences about the messages within the texts, the writer(s), the audience, and even the culture and time of surrounding the text.

Description

Sources of data could be from interviews, open-ended questions, field research notes, conversations, or literally any occurrence of communicative language (such as books, essays, discussions, newspaper headlines, speeches, media, historical documents). A single study may analyze various forms of text in its analysis. To analyze the text using content analysis, the text must be coded, or broken down, into manageable code categories for analysis (i.e. “codes”). Once the text is coded into code categories, the codes can then be further categorized into “code categories” to summarize data even further.

Three different definitions of content analysis are provided below.

Definition 1: “Any technique for making inferences by systematically and objectively identifying special characteristics of messages.” (from Holsti, 1968)

Definition 2: “An interpretive and naturalistic approach. It is both observational and narrative in nature and relies less on the experimental elements normally associated with scientific research (reliability, validity, and generalizability) (from Ethnography, Observational Research, and Narrative Inquiry, 1994-2012).

Definition 3: “A research technique for the objective, systematic and quantitative description of the manifest content of communication.” (from Berelson, 1952)

Uses of Content Analysis

Identify the intentions, focus or communication trends of an individual, group or institution

Describe attitudinal and behavioral responses to communications

Determine the psychological or emotional state of persons or groups

Reveal international differences in communication content

Reveal patterns in communication content

Pre-test and improve an intervention or survey prior to launch

Analyze focus group interviews and open-ended questions to complement quantitative data

Types of Content Analysis

There are two general types of content analysis: conceptual analysis and relational analysis. Conceptual analysis determines the existence and frequency of concepts in a text. Relational analysis develops the conceptual analysis further by examining the relationships among concepts in a text. Each type of analysis may lead to different results, conclusions, interpretations and meanings.

Conceptual Analysis

Typically people think of conceptual analysis when they think of content analysis. In conceptual analysis, a concept is chosen for examination and the analysis involves quantifying and counting its presence. The main goal is to examine the occurrence of selected terms in the data. Terms may be explicit or implicit. Explicit terms are easy to identify. Coding of implicit terms is more complicated: you need to decide the level of implication and base judgments on subjectivity (an issue for reliability and validity). Therefore, coding of implicit terms involves using a dictionary or contextual translation rules or both.

To begin a conceptual content analysis, first identify the research question and choose a sample or samples for analysis. Next, the text must be coded into manageable content categories. This is basically a process of selective reduction. By reducing the text to categories, the researcher can focus on and code for specific words or patterns that inform the research question.

General steps for conducting a conceptual content analysis:

1. Decide the level of analysis: word, word sense, phrase, sentence, themes

2. Decide how many concepts to code for: develop a pre-defined or interactive set of categories or concepts. Decide either: A. to allow flexibility to add categories through the coding process, or B. to stick with the pre-defined set of categories.

Option A allows for the introduction and analysis of new and important material that could have significant implications to one’s research question.

Option B allows the researcher to stay focused and examine the data for specific concepts.

3. Decide whether to code for existence or frequency of a concept. The decision changes the coding process.

When coding for the existence of a concept, the researcher would count a concept only once if it appeared at least once in the data and no matter how many times it appeared.

When coding for the frequency of a concept, the researcher would count the number of times a concept appears in a text.

4. Decide on how you will distinguish among concepts:

Should text be coded exactly as they appear or coded as the same when they appear in different forms? For example, “dangerous” vs. “dangerousness”. The point here is to create coding rules so that these word segments are transparently categorized in a logical fashion. The rules could make all of these word segments fall into the same category, or perhaps the rules can be formulated so that the researcher can distinguish these word segments into separate codes.

What level of implication is to be allowed? Words that imply the concept or words that explicitly state the concept? For example, “dangerous” vs. “the person is scary” vs. “that person could cause harm to me”. These word segments may not merit separate categories, due the implicit meaning of “dangerous”.

5. Develop rules for coding your texts. After decisions of steps 1-4 are complete, a researcher can begin developing rules for translation of text into codes. This will keep the coding process organized and consistent. The researcher can code for exactly what he/she wants to code. Validity of the coding process is ensured when the researcher is consistent and coherent in their codes, meaning that they follow their translation rules. In content analysis, obeying by the translation rules is equivalent to validity.

6. Decide what to do with irrelevant information: should this be ignored (e.g. common English words like “the” and “and”), or used to reexamine the coding scheme in the case that it would add to the outcome of coding?

7. Code the text: This can be done by hand or by using software. By using software, researchers can input categories and have coding done automatically, quickly and efficiently, by the software program. When coding is done by hand, a researcher can recognize errors far more easily (e.g. typos, misspelling). If using computer coding, text could be cleaned of errors to include all available data. This decision of hand vs. computer coding is most relevant for implicit information where category preparation is essential for accurate coding.

8. Analyze your results: Draw conclusions and generalizations where possible. Determine what to do with irrelevant, unwanted, or unused text: reexamine, ignore, or reassess the coding scheme. Interpret results carefully as conceptual content analysis can only quantify the information. Typically, general trends and patterns can be identified.

Relational Analysis

Relational analysis begins like conceptual analysis, where a concept is chosen for examination. However, the analysis involves exploring the relationships between concepts. Individual concepts are viewed as having no inherent meaning and rather the meaning is a product of the relationships among concepts.

To begin a relational content analysis, first identify a research question and choose a sample or samples for analysis. The research question must be focused so the concept types are not open to interpretation and can be summarized. Next, select text for analysis. Select text for analysis carefully by balancing having enough information for a thorough analysis so results are not limited with having information that is too extensive so that the coding process becomes too arduous and heavy to supply meaningful and worthwhile results.

There are three subcategories of relational analysis to choose from prior to going on to the general steps.

Affect extraction: an emotional evaluation of concepts explicit in a text. A challenge to this method is that emotions can vary across time, populations, and space. However, it could be effective at capturing the emotional and psychological state of the speaker or writer of the text.

Proximity analysis: an evaluation of the co-occurrence of explicit concepts in the text. Text is defined as a string of words called a “window” that is scanned for the co-occurrence of concepts. The result is the creation of a “concept matrix”, or a group of interrelated co-occurring concepts that would suggest an overall meaning.

Cognitive mapping: a visualization technique for either affect extraction or proximity analysis. Cognitive mapping attempts to create a model of the overall meaning of the text such as a graphic map that represents the relationships between concepts.

General steps for conducting a relational content analysis:

1. Determine the type of analysis: Once the sample has been selected, the researcher needs to determine what types of relationships to examine and the level of analysis: word, word sense, phrase, sentence, themes. 2. Reduce the text to categories and code for words or patterns. A researcher can code for existence of meanings or words. 3. Explore the relationship between concepts: once the words are coded, the text can be analyzed for the following:

Strength of relationship: degree to which two or more concepts are related.

Sign of relationship: are concepts positively or negatively related to each other?

Direction of relationship: the types of relationship that categories exhibit. For example, “X implies Y” or “X occurs before Y” or “if X then Y” or if X is the primary motivator of Y.

4. Code the relationships: a difference between conceptual and relational analysis is that the statements or relationships between concepts are coded. 5. Perform statistical analyses: explore differences or look for relationships among the identified variables during coding. 6. Map out representations: such as decision mapping and mental models.

Reliability and Validity

Reliability : Because of the human nature of researchers, coding errors can never be eliminated but only minimized. Generally, 80% is an acceptable margin for reliability. Three criteria comprise the reliability of a content analysis:

Stability: the tendency for coders to consistently re-code the same data in the same way over a period of time.

Reproducibility: tendency for a group of coders to classify categories membership in the same way.

Accuracy: extent to which the classification of text corresponds to a standard or norm statistically.

Validity : Three criteria comprise the validity of a content analysis:

Closeness of categories: this can be achieved by utilizing multiple classifiers to arrive at an agreed upon definition of each specific category. Using multiple classifiers, a concept category that may be an explicit variable can be broadened to include synonyms or implicit variables.

Conclusions: What level of implication is allowable? Do conclusions correctly follow the data? Are results explainable by other phenomena? This becomes especially problematic when using computer software for analysis and distinguishing between synonyms. For example, the word “mine,” variously denotes a personal pronoun, an explosive device, and a deep hole in the ground from which ore is extracted. Software can obtain an accurate count of that word’s occurrence and frequency, but not be able to produce an accurate accounting of the meaning inherent in each particular usage. This problem could throw off one’s results and make any conclusion invalid.

Generalizability of the results to a theory: dependent on the clear definitions of concept categories, how they are determined and how reliable they are at measuring the idea one is seeking to measure. Generalizability parallels reliability as much of it depends on the three criteria for reliability.

Advantages of Content Analysis

Directly examines communication using text

Allows for both qualitative and quantitative analysis

Provides valuable historical and cultural insights over time

Allows a closeness to data

Coded form of the text can be statistically analyzed

Unobtrusive means of analyzing interactions

Provides insight into complex models of human thought and language use

When done well, is considered a relatively “exact” research method

Content analysis is a readily-understood and an inexpensive research method

A more powerful tool when combined with other research methods such as interviews, observation, and use of archival records. It is very useful for analyzing historical material, especially for documenting trends over time.

Disadvantages of Content Analysis

Can be extremely time consuming

Is subject to increased error, particularly when relational analysis is used to attain a higher level of interpretation

Is often devoid of theoretical base, or attempts too liberally to draw meaningful inferences about the relationships and impacts implied in a study

Is inherently reductive, particularly when dealing with complex texts

Tends too often to simply consist of word counts

Often disregards the context that produced the text, as well as the state of things after the text is produced

Can be difficult to automate or computerize

Textbooks & Chapters  

Berelson, Bernard. Content Analysis in Communication Research.New York: Free Press, 1952.

Busha, Charles H. and Stephen P. Harter. Research Methods in Librarianship: Techniques and Interpretation.New York: Academic Press, 1980.

de Sola Pool, Ithiel. Trends in Content Analysis. Urbana: University of Illinois Press, 1959.

Krippendorff, Klaus. Content Analysis: An Introduction to its Methodology. Beverly Hills: Sage Publications, 1980.

Fielding, NG & Lee, RM. Using Computers in Qualitative Research. SAGE Publications, 1991. (Refer to Chapter by Seidel, J. ‘Method and Madness in the Application of Computer Technology to Qualitative Data Analysis’.)

Methodological Articles  

Hsieh HF & Shannon SE. (2005). Three Approaches to Qualitative Content Analysis.Qualitative Health Research. 15(9): 1277-1288.

Elo S, Kaarianinen M, Kanste O, Polkki R, Utriainen K, & Kyngas H. (2014). Qualitative Content Analysis: A focus on trustworthiness. Sage Open. 4:1-10.

Application Articles  

Abroms LC, Padmanabhan N, Thaweethai L, & Phillips T. (2011). iPhone Apps for Smoking Cessation: A content analysis. American Journal of Preventive Medicine. 40(3):279-285.

Ullstrom S. Sachs MA, Hansson J, Ovretveit J, & Brommels M. (2014). Suffering in Silence: a qualitative study of second victims of adverse events. British Medical Journal, Quality & Safety Issue. 23:325-331.

Owen P. (2012).Portrayals of Schizophrenia by Entertainment Media: A Content Analysis of Contemporary Movies. Psychiatric Services. 63:655-659.

Choosing whether to conduct a content analysis by hand or by using computer software can be difficult. Refer to ‘Method and Madness in the Application of Computer Technology to Qualitative Data Analysis’ listed above in “Textbooks and Chapters” for a discussion of the issue.

QSR NVivo:  http://www.qsrinternational.com/products.aspx

Atlas.ti:  http://www.atlasti.com/webinars.html

R- RQDA package:  http://rqda.r-forge.r-project.org/

Rolly Constable, Marla Cowell, Sarita Zornek Crawford, David Golden, Jake Hartvigsen, Kathryn Morgan, Anne Mudgett, Kris Parrish, Laura Thomas, Erika Yolanda Thompson, Rosie Turner, and Mike Palmquist. (1994-2012). Ethnography, Observational Research, and Narrative Inquiry. Writing@CSU. Colorado State University. Available at: https://writing.colostate.edu/guides/guide.cfm?guideid=63 .

As an introduction to Content Analysis by Michael Palmquist, this is the main resource on Content Analysis on the Web. It is comprehensive, yet succinct. It includes examples and an annotated bibliography. The information contained in the narrative above draws heavily from and summarizes Michael Palmquist’s excellent resource on Content Analysis but was streamlined for the purpose of doctoral students and junior researchers in epidemiology.

At Columbia University Mailman School of Public Health, more detailed training is available through the Department of Sociomedical Sciences- P8785 Qualitative Research Methods.

Join the Conversation

Have a question about methods? Join us on Facebook

  • Privacy Policy

Research Method

Home » Content Analysis – Methods, Types and Examples

Content Analysis – Methods, Types and Examples

Table of Contents

Content Analysis

Content Analysis

Definition:

Content analysis is a research method used to analyze and interpret the characteristics of various forms of communication, such as text, images, or audio. It involves systematically analyzing the content of these materials, identifying patterns, themes, and other relevant features, and drawing inferences or conclusions based on the findings.

Content analysis can be used to study a wide range of topics, including media coverage of social issues, political speeches, advertising messages, and online discussions, among others. It is often used in qualitative research and can be combined with other methods to provide a more comprehensive understanding of a particular phenomenon.

Types of Content Analysis

There are generally two types of content analysis:

Quantitative Content Analysis

This type of content analysis involves the systematic and objective counting and categorization of the content of a particular form of communication, such as text or video. The data obtained is then subjected to statistical analysis to identify patterns, trends, and relationships between different variables. Quantitative content analysis is often used to study media content, advertising, and political speeches.

Qualitative Content Analysis

This type of content analysis is concerned with the interpretation and understanding of the meaning and context of the content. It involves the systematic analysis of the content to identify themes, patterns, and other relevant features, and to interpret the underlying meanings and implications of these features. Qualitative content analysis is often used to study interviews, focus groups, and other forms of qualitative data, where the researcher is interested in understanding the subjective experiences and perceptions of the participants.

Methods of Content Analysis

There are several methods of content analysis, including:

Conceptual Analysis

This method involves analyzing the meanings of key concepts used in the content being analyzed. The researcher identifies key concepts and analyzes how they are used, defining them and categorizing them into broader themes.

Content Analysis by Frequency

This method involves counting and categorizing the frequency of specific words, phrases, or themes that appear in the content being analyzed. The researcher identifies relevant keywords or phrases and systematically counts their frequency.

Comparative Analysis

This method involves comparing the content of two or more sources to identify similarities, differences, and patterns. The researcher selects relevant sources, identifies key themes or concepts, and compares how they are represented in each source.

Discourse Analysis

This method involves analyzing the structure and language of the content being analyzed to identify how the content constructs and represents social reality. The researcher analyzes the language used and the underlying assumptions, beliefs, and values reflected in the content.

Narrative Analysis

This method involves analyzing the content as a narrative, identifying the plot, characters, and themes, and analyzing how they relate to the broader social context. The researcher identifies the underlying messages conveyed by the narrative and their implications for the broader social context.

Content Analysis Conducting Guide

Here is a basic guide to conducting a content analysis:

  • Define your research question or objective: Before starting your content analysis, you need to define your research question or objective clearly. This will help you to identify the content you need to analyze and the type of analysis you need to conduct.
  • Select your sample: Select a representative sample of the content you want to analyze. This may involve selecting a random sample, a purposive sample, or a convenience sample, depending on the research question and the availability of the content.
  • Develop a coding scheme: Develop a coding scheme or a set of categories to use for coding the content. The coding scheme should be based on your research question or objective and should be reliable, valid, and comprehensive.
  • Train coders: Train coders to use the coding scheme and ensure that they have a clear understanding of the coding categories and procedures. You may also need to establish inter-coder reliability to ensure that different coders are coding the content consistently.
  • Code the content: Code the content using the coding scheme. This may involve manually coding the content, using software, or a combination of both.
  • Analyze the data: Once the content is coded, analyze the data using appropriate statistical or qualitative methods, depending on the research question and the type of data.
  • Interpret the results: Interpret the results of the analysis in the context of your research question or objective. Draw conclusions based on the findings and relate them to the broader literature on the topic.
  • Report your findings: Report your findings in a clear and concise manner, including the research question, methodology, results, and conclusions. Provide details about the coding scheme, inter-coder reliability, and any limitations of the study.

Applications of Content Analysis

Content analysis has numerous applications across different fields, including:

  • Media Research: Content analysis is commonly used in media research to examine the representation of different groups, such as race, gender, and sexual orientation, in media content. It can also be used to study media framing, media bias, and media effects.
  • Political Communication : Content analysis can be used to study political communication, including political speeches, debates, and news coverage of political events. It can also be used to study political advertising and the impact of political communication on public opinion and voting behavior.
  • Marketing Research: Content analysis can be used to study advertising messages, consumer reviews, and social media posts related to products or services. It can provide insights into consumer preferences, attitudes, and behaviors.
  • Health Communication: Content analysis can be used to study health communication, including the representation of health issues in the media, the effectiveness of health campaigns, and the impact of health messages on behavior.
  • Education Research : Content analysis can be used to study educational materials, including textbooks, curricula, and instructional materials. It can provide insights into the representation of different topics, perspectives, and values.
  • Social Science Research: Content analysis can be used in a wide range of social science research, including studies of social media, online communities, and other forms of digital communication. It can also be used to study interviews, focus groups, and other qualitative data sources.

Examples of Content Analysis

Here are some examples of content analysis:

  • Media Representation of Race and Gender: A content analysis could be conducted to examine the representation of different races and genders in popular media, such as movies, TV shows, and news coverage.
  • Political Campaign Ads : A content analysis could be conducted to study political campaign ads and the themes and messages used by candidates.
  • Social Media Posts: A content analysis could be conducted to study social media posts related to a particular topic, such as the COVID-19 pandemic, to examine the attitudes and beliefs of social media users.
  • Instructional Materials: A content analysis could be conducted to study the representation of different topics and perspectives in educational materials, such as textbooks and curricula.
  • Product Reviews: A content analysis could be conducted to study product reviews on e-commerce websites, such as Amazon, to identify common themes and issues mentioned by consumers.
  • News Coverage of Health Issues: A content analysis could be conducted to study news coverage of health issues, such as vaccine hesitancy, to identify common themes and perspectives.
  • Online Communities: A content analysis could be conducted to study online communities, such as discussion forums or social media groups, to understand the language, attitudes, and beliefs of the community members.

Purpose of Content Analysis

The purpose of content analysis is to systematically analyze and interpret the content of various forms of communication, such as written, oral, or visual, to identify patterns, themes, and meanings. Content analysis is used to study communication in a wide range of fields, including media studies, political science, psychology, education, sociology, and marketing research. The primary goals of content analysis include:

  • Describing and summarizing communication: Content analysis can be used to describe and summarize the content of communication, such as the themes, topics, and messages conveyed in media content, political speeches, or social media posts.
  • Identifying patterns and trends: Content analysis can be used to identify patterns and trends in communication, such as changes over time, differences between groups, or common themes or motifs.
  • Exploring meanings and interpretations: Content analysis can be used to explore the meanings and interpretations of communication, such as the underlying values, beliefs, and assumptions that shape the content.
  • Testing hypotheses and theories : Content analysis can be used to test hypotheses and theories about communication, such as the effects of media on attitudes and behaviors or the framing of political issues in the media.

When to use Content Analysis

Content analysis is a useful method when you want to analyze and interpret the content of various forms of communication, such as written, oral, or visual. Here are some specific situations where content analysis might be appropriate:

  • When you want to study media content: Content analysis is commonly used in media studies to analyze the content of TV shows, movies, news coverage, and other forms of media.
  • When you want to study political communication : Content analysis can be used to study political speeches, debates, news coverage, and advertising.
  • When you want to study consumer attitudes and behaviors: Content analysis can be used to analyze product reviews, social media posts, and other forms of consumer feedback.
  • When you want to study educational materials : Content analysis can be used to analyze textbooks, instructional materials, and curricula.
  • When you want to study online communities: Content analysis can be used to analyze discussion forums, social media groups, and other forms of online communication.
  • When you want to test hypotheses and theories : Content analysis can be used to test hypotheses and theories about communication, such as the framing of political issues in the media or the effects of media on attitudes and behaviors.

Characteristics of Content Analysis

Content analysis has several key characteristics that make it a useful research method. These include:

  • Objectivity : Content analysis aims to be an objective method of research, meaning that the researcher does not introduce their own biases or interpretations into the analysis. This is achieved by using standardized and systematic coding procedures.
  • Systematic: Content analysis involves the use of a systematic approach to analyze and interpret the content of communication. This involves defining the research question, selecting the sample of content to analyze, developing a coding scheme, and analyzing the data.
  • Quantitative : Content analysis often involves counting and measuring the occurrence of specific themes or topics in the content, making it a quantitative research method. This allows for statistical analysis and generalization of findings.
  • Contextual : Content analysis considers the context in which the communication takes place, such as the time period, the audience, and the purpose of the communication.
  • Iterative : Content analysis is an iterative process, meaning that the researcher may refine the coding scheme and analysis as they analyze the data, to ensure that the findings are valid and reliable.
  • Reliability and validity : Content analysis aims to be a reliable and valid method of research, meaning that the findings are consistent and accurate. This is achieved through inter-coder reliability tests and other measures to ensure the quality of the data and analysis.

Advantages of Content Analysis

There are several advantages to using content analysis as a research method, including:

  • Objective and systematic : Content analysis aims to be an objective and systematic method of research, which reduces the likelihood of bias and subjectivity in the analysis.
  • Large sample size: Content analysis allows for the analysis of a large sample of data, which increases the statistical power of the analysis and the generalizability of the findings.
  • Non-intrusive: Content analysis does not require the researcher to interact with the participants or disrupt their natural behavior, making it a non-intrusive research method.
  • Accessible data: Content analysis can be used to analyze a wide range of data types, including written, oral, and visual communication, making it accessible to researchers across different fields.
  • Versatile : Content analysis can be used to study communication in a wide range of contexts and fields, including media studies, political science, psychology, education, sociology, and marketing research.
  • Cost-effective: Content analysis is a cost-effective research method, as it does not require expensive equipment or participant incentives.

Limitations of Content Analysis

While content analysis has many advantages, there are also some limitations to consider, including:

  • Limited contextual information: Content analysis is focused on the content of communication, which means that contextual information may be limited. This can make it difficult to fully understand the meaning behind the communication.
  • Limited ability to capture nonverbal communication : Content analysis is limited to analyzing the content of communication that can be captured in written or recorded form. It may miss out on nonverbal communication, such as body language or tone of voice.
  • Subjectivity in coding: While content analysis aims to be objective, there may be subjectivity in the coding process. Different coders may interpret the content differently, which can lead to inconsistent results.
  • Limited ability to establish causality: Content analysis is a correlational research method, meaning that it cannot establish causality between variables. It can only identify associations between variables.
  • Limited generalizability: Content analysis is limited to the data that is analyzed, which means that the findings may not be generalizable to other contexts or populations.
  • Time-consuming: Content analysis can be a time-consuming research method, especially when analyzing a large sample of data. This can be a disadvantage for researchers who need to complete their research in a short amount of time.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Descriptive Statistics

Descriptive Statistics – Types, Methods and...

Phenomenology

Phenomenology – Methods, Examples and Guide

Methodological Framework

Methodological Framework – Types, Examples and...

MANOVA

MANOVA (Multivariate Analysis of Variance) –...

Narrative Analysis

Narrative Analysis – Types, Methods and Examples

Data Analysis

Data Analysis – Process, Methods and Types

content analysis research method example

What Is Qualitative Content Analysis?

By: Jenna Crosley (PhD). Reviewed by: Dr Eunice Rautenbach (DTech) | February 2021

Dissertation Coaching

Overview: Qualitative Content Analysis

  • What (exactly) is qualitative content analysis
  • The two main types of content analysis
  • When to use content analysis
  • How to conduct content analysis (the process)
  • The advantages and disadvantages of content analysis

1. What is content analysis?

Content analysis is a  qualitative analysis method  that focuses on recorded human artefacts such as manuscripts, voice recordings and journals. Content analysis investigates these written, spoken and visual artefacts without explicitly extracting data from participants – this is called  unobtrusive  research.

In other words, with content analysis, you don’t necessarily need to interact with participants (although you can if necessary); you can simply analyse the data that they have already produced. With this type of analysis, you can analyse data such as text messages, books, Facebook posts, videos, and audio (just to mention a few).

The basics – explicit and implicit content

When working with content analysis, explicit and implicit content will play a role. Explicit data is transparent and easy to identify, while implicit data is that which requires some form of interpretation and is often of a subjective nature. Sounds a bit fluffy? Here’s an example:

Joe: Hi there, what can I help you with? 

Lauren: I recently adopted a puppy and I’m worried that I’m not feeding him the right food. Could you please advise me on what I should be feeding? 

Joe: Sure, just follow me and I’ll show you. Do you have any other pets?

Lauren: Only one, and it tweets a lot!

In this exchange, the explicit data indicates that Joe is helping Lauren to find the right puppy food. Lauren asks Joe whether she has any pets aside from her puppy. This data is explicit because it requires no interpretation.

On the other hand, implicit data , in this case, includes the fact that the speakers are in a pet store. This information is not clearly stated but can be inferred from the conversation, where Joe is helping Lauren to choose pet food. An additional piece of implicit data is that Lauren likely has some type of bird as a pet. This can be inferred from the way that Lauren states that her pet “tweets”.

As you can see, explicit and implicit data both play a role in human interaction  and are an important part of your analysis. However, it’s important to differentiate between these two types of data when you’re undertaking content analysis. Interpreting implicit data can be rather subjective as conclusions are based on the researcher’s interpretation. This can introduce an element of bias , which risks skewing your results.

Explicit and implicit data both play an important role in your content analysis, but it’s important to differentiate between them.

2. The two types of content analysis

Now that you understand the difference between implicit and explicit data, let’s move on to the two general types of content analysis : conceptual and relational content analysis. Importantly, while conceptual and relational content analysis both follow similar steps initially, the aims and outcomes of each are different.

Conceptual analysis focuses on the number of times a concept occurs in a set of data and is generally focused on explicit data. For example, if you were to have the following conversation:

Marie: She told me that she has three cats.

Jean: What are her cats’ names?

Marie: I think the first one is Bella, the second one is Mia, and… I can’t remember the third cat’s name.

In this data, you can see that the word “cat” has been used three times. Through conceptual content analysis, you can deduce that cats are the central topic of the conversation. You can also perform a frequency analysis , where you assess the term’s frequency in the data. For example, in the exchange above, the word “cat” makes up 9% of the data. In other words, conceptual analysis brings a little bit of quantitative analysis into your qualitative analysis.

As you can see, the above data is without interpretation and focuses on explicit data . Relational content analysis, on the other hand, takes a more holistic view by focusing more on implicit data in terms of context, surrounding words and relationships.

There are three types of relational analysis:

  • Affect extraction
  • Proximity analysis
  • Cognitive mapping

Affect extraction is when you assess concepts according to emotional attributes. These emotions are typically mapped on scales, such as a Likert scale or a rating scale ranging from 1 to 5, where 1 is “very sad” and 5 is “very happy”.

If participants are talking about their achievements, they are likely to be given a score of 4 or 5, depending on how good they feel about it. If a participant is describing a traumatic event, they are likely to have a much lower score, either 1 or 2.

Proximity analysis identifies explicit terms (such as those found in a conceptual analysis) and the patterns in terms of how they co-occur in a text. In other words, proximity analysis investigates the relationship between terms and aims to group these to extract themes and develop meaning.

Proximity analysis is typically utilised when you’re looking for hard facts rather than emotional, cultural, or contextual factors. For example, if you were to analyse a political speech, you may want to focus only on what has been said, rather than implications or hidden meanings. To do this, you would make use of explicit data, discounting any underlying meanings and implications of the speech.

Lastly, there’s cognitive mapping, which can be used in addition to, or along with, proximity analysis. Cognitive mapping involves taking different texts and comparing them in a visual format – i.e. a cognitive map. Typically, you’d use cognitive mapping in studies that assess changes in terms, definitions, and meanings over time. It can also serve as a way to visualise affect extraction or proximity analysis and is often presented in a form such as a graphic map.

Example of a cognitive map

To recap on the essentials, content analysis is a qualitative analysis method that focuses on recorded human artefacts . It involves both conceptual analysis (which is more numbers-based) and relational analysis (which focuses on the relationships between concepts and how they’re connected).

Need a helping hand?

content analysis research method example

3. When should you use content analysis?

Content analysis is a useful tool that provides insight into trends of communication . For example, you could use a discussion forum as the basis of your analysis and look at the types of things the members talk about as well as how they use language to express themselves. Content analysis is flexible in that it can be applied to the individual, group, and institutional level.

Content analysis is typically used in studies where the aim is to better understand factors such as behaviours, attitudes, values, emotions, and opinions . For example, you could use content analysis to investigate an issue in society, such as miscommunication between cultures. In this example, you could compare patterns of communication in participants from different cultures, which will allow you to create strategies for avoiding misunderstandings in intercultural interactions.

Another example could include conducting content analysis on a publication such as a book. Here you could gather data on the themes, topics, language use and opinions reflected in the text to draw conclusions regarding the political (such as conservative or liberal) leanings of the publication.

Content analysis is typically used in projects where the research aims involve getting a better understanding of factors such as behaviours, attitudes, values, emotions, and opinions.

4. How to conduct a qualitative content analysis

Conceptual and relational content analysis differ in terms of their exact process ; however, there are some similarities. Let’s have a look at these first – i.e., the generic process:

  • Recap on your research questions
  • Undertake bracketing to identify biases
  • Operationalise your variables and develop a coding scheme
  • Code the data and undertake your analysis

Step 1 – Recap on your research questions

It’s always useful to begin a project with research questions , or at least with an idea of what you are looking for. In fact, if you’ve spent time reading this blog, you’ll know that it’s useful to recap on your research questions, aims and objectives when undertaking pretty much any research activity. In the context of content analysis, it’s difficult to know what needs to be coded and what doesn’t, without a clear view of the research questions.

For example, if you were to code a conversation focused on basic issues of social justice, you may be met with a wide range of topics that may be irrelevant to your research. However, if you approach this data set with the specific intent of investigating opinions on gender issues, you will be able to focus on this topic alone, which would allow you to code only what you need to investigate.

With content analysis, it’s difficult to know what needs to be coded  without a clear view of the research questions.

Step 2 – Reflect on your personal perspectives and biases

It’s vital that you reflect on your own pre-conception of the topic at hand and identify the biases that you might drag into your content analysis – this is called “ bracketing “. By identifying this upfront, you’ll be more aware of them and less likely to have them subconsciously influence your analysis.

For example, if you were to investigate how a community converses about unequal access to healthcare, it is important to assess your views to ensure that you don’t project these onto your understanding of the opinions put forth by the community. If you have access to medical aid, for instance, you should not allow this to interfere with your examination of unequal access.

You must reflect on the preconceptions and biases that you might drag into your content analysis - this is called "bracketing".

Step 3 – Operationalise your variables and develop a coding scheme

Next, you need to operationalise your variables . But what does that mean? Simply put, it means that you have to define each variable or construct . Give every item a clear definition – what does it mean (include) and what does it not mean (exclude). For example, if you were to investigate children’s views on healthy foods, you would first need to define what age group/range you’re looking at, and then also define what you mean by “healthy foods”.

In combination with the above, it is important to create a coding scheme , which will consist of information about your variables (how you defined each variable), as well as a process for analysing the data. For this, you would refer back to how you operationalised/defined your variables so that you know how to code your data.

For example, when coding, when should you code a food as “healthy”? What makes a food choice healthy? Is it the absence of sugar or saturated fat? Is it the presence of fibre and protein? It’s very important to have clearly defined variables to achieve consistent coding – without this, your analysis will get very muddy, very quickly.

When operationalising your variables, you must give every item a clear definition. In other words, what does it mean (include) and what does it not mean (exclude).

Step 4 – Code and analyse the data

The next step is to code the data. At this stage, there are some differences between conceptual and relational analysis.

As described earlier in this post, conceptual analysis looks at the existence and frequency of concepts, whereas a relational analysis looks at the relationships between concepts. For both types of analyses, it is important to pre-select a concept that you wish to assess in your data. Using the example of studying children’s views on healthy food, you could pre-select the concept of “healthy food” and assess the number of times the concept pops up in your data.

Here is where conceptual and relational analysis start to differ.

At this stage of conceptual analysis , it is necessary to decide on the level of analysis you’ll perform on your data, and whether this will exist on the word, phrase, sentence, or thematic level. For example, will you code the phrase “healthy food” on its own? Will you code each term relating to healthy food (e.g., broccoli, peaches, bananas, etc.) with the code “healthy food” or will these be coded individually? It is very important to establish this from the get-go to avoid inconsistencies that could result in you having to code your data all over again.

On the other hand, relational analysis looks at the type of analysis. So, will you use affect extraction? Proximity analysis? Cognitive mapping? A mix? It’s vital to determine the type of analysis before you begin to code your data so that you can maintain the reliability and validity of your research .

content analysis research method example

How to conduct conceptual analysis

First, let’s have a look at the process for conceptual analysis.

Once you’ve decided on your level of analysis, you need to establish how you will code your concepts, and how many of these you want to code. Here you can choose whether you want to code in a deductive or inductive manner. Just to recap, deductive coding is when you begin the coding process with a set of pre-determined codes, whereas inductive coding entails the codes emerging as you progress with the coding process. Here it is also important to decide what should be included and excluded from your analysis, and also what levels of implication you wish to include in your codes.

For example, if you have the concept of “tall”, can you include “up in the clouds”, derived from the sentence, “the giraffe’s head is up in the clouds” in the code, or should it be a separate code? In addition to this, you need to know what levels of words may be included in your codes or not. For example, if you say, “the panda is cute” and “look at the panda’s cuteness”, can “cute” and “cuteness” be included under the same code?

Once you’ve considered the above, it’s time to code the text . We’ve already published a detailed post about coding , so we won’t go into that process here. Once you’re done coding, you can move on to analysing your results. This is where you will aim to find generalisations in your data, and thus draw your conclusions .

How to conduct relational analysis

Now let’s return to relational analysis.

As mentioned, you want to look at the relationships between concepts . To do this, you’ll need to create categories by reducing your data (in other words, grouping similar concepts together) and then also code for words and/or patterns. These are both done with the aim of discovering whether these words exist, and if they do, what they mean.

Your next step is to assess your data and to code the relationships between your terms and meanings, so that you can move on to your final step, which is to sum up and analyse the data.

To recap, it’s important to start your analysis process by reviewing your research questions and identifying your biases . From there, you need to operationalise your variables, code your data and then analyse it.

Time to analyse

5. What are the pros & cons of content analysis?

One of the main advantages of content analysis is that it allows you to use a mix of quantitative and qualitative research methods, which results in a more scientifically rigorous analysis.

For example, with conceptual analysis, you can count the number of times that a term or a code appears in a dataset, which can be assessed from a quantitative standpoint. In addition to this, you can then use a qualitative approach to investigate the underlying meanings of these and relationships between them.

Content analysis is also unobtrusive and therefore poses fewer ethical issues than some other analysis methods. As the content you’ll analyse oftentimes already exists, you’ll analyse what has been produced previously, and so you won’t have to collect data directly from participants. When coded correctly, data is analysed in a very systematic and transparent manner, which means that issues of replicability (how possible it is to recreate research under the same conditions) are reduced greatly.

On the downside , qualitative research (in general, not just content analysis) is often critiqued for being too subjective and for not being scientifically rigorous enough. This is where reliability (how replicable a study is by other researchers) and validity (how suitable the research design is for the topic being investigated) come into play – if you take these into account, you’ll be on your way to achieving sound research results.

One of the main advantages of content analysis is that it allows you to use a mix of quantitative and qualitative research methods, which results in a more scientifically rigorous analysis.

Recap: Qualitative content analysis

In this post, we’ve covered a lot of ground – click on any of the sections to recap:

If you have any questions about qualitative content analysis, feel free to leave a comment below. If you’d like 1-on-1 help with your qualitative content analysis, be sure to book an initial consultation with one of our friendly Research Coaches.

Research Bootcamps

Learn More About Qualitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Structured, Semi-Structured & Unstructured Interviews

Structured, Semi-Structured & Unstructured Interviews

Learn about the differences (and similarities) between the three interview approaches: structured, semi-structured and unstructured.

Qualitative Coding Examples: Process, Values & In Vivo Coding

Qualitative Coding Examples: Process, Values & In Vivo Coding

See real-world examples of qualitative data that has been coded using process coding, values coding and in vivo coding.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

Process Coding 101: Full Explainer With Examples

Process Coding 101: Full Explainer With Examples

Learn about process coding, a popular qualitative coding technique ideal for studies exploring processes, actions and changes over time.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

19 Comments

Abhishek

If I am having three pre-decided attributes for my research based on which a set of semi-structured questions where asked then should I conduct a conceptual content analysis or relational content analysis. please note that all three attributes are different like Agility, Resilience and AI.

Ofori Henry Affum

Thank you very much. I really enjoyed every word.

Janak Raj Bhatta

please send me one/ two sample of content analysis

pravin

send me to any sample of qualitative content analysis as soon as possible

abdellatif djedei

Many thanks for the brilliant explanation. Do you have a sample practical study of a foreign policy using content analysis?

DR. TAPAS GHOSHAL

1) It will be very much useful if a small but complete content analysis can be sent, from research question to coding and analysis. 2) Is there any software by which qualitative content analysis can be done?

Carkanirta

Common software for qualitative analysis is nVivo, and quantitative analysis is IBM SPSS

carmely

Thank you. Can I have at least 2 copies of a sample analysis study as my reference?

Yang

Could you please send me some sample of textbook content analysis?

Abdoulie Nyassi

Can I send you my research topic, aims, objectives and questions to give me feedback on them?

Bobby Benjamin Simeon

please could you send me samples of content analysis?

Obi Clara Chisom

Yes please send

Gaid Ahmed

really we enjoyed your knowledge thanks allot. from Ethiopia

Ary

can you please share some samples of content analysis(relational)? I am a bit confused about processing the analysis part

eeeema

Is it possible for you to list the journal articles and books or other sources you used to write this article? Thank you.

Upeksha Hettithanthri

can you please send some samples of content analysis ?

can you kindly send some good examples done by using content analysis ?

samuel batimedi

This was very useful. can you please send me sample for qualitative content analysis. thank you

Lawal Ridwan Olalekan

What a brilliant explanation! Kindly help with textbooks or blogs on the context analysis method such as discourse, thematic and semiotic analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

content analysis research method example

  • Print Friendly

Logo for Open Educational Resources

Chapter 17. Content Analysis

Introduction.

Content analysis is a term that is used to mean both a method of data collection and a method of data analysis. Archival and historical works can be the source of content analysis, but so too can the contemporary media coverage of a story, blogs, comment posts, films, cartoons, advertisements, brand packaging, and photographs posted on Instagram or Facebook. Really, almost anything can be the “content” to be analyzed. This is a qualitative research method because the focus is on the meanings and interpretations of that content rather than strictly numerical counts or variables-based causal modeling. [1] Qualitative content analysis (sometimes referred to as QCA) is particularly useful when attempting to define and understand prevalent stories or communication about a topic of interest—in other words, when we are less interested in what particular people (our defined sample) are doing or believing and more interested in what general narratives exist about a particular topic or issue. This chapter will explore different approaches to content analysis and provide helpful tips on how to collect data, how to turn that data into codes for analysis, and how to go about presenting what is found through analysis. It is also a nice segue between our data collection methods (e.g., interviewing, observation) chapters and chapters 18 and 19, whose focus is on coding, the primary means of data analysis for most qualitative data. In many ways, the methods of content analysis are quite similar to the method of coding.

content analysis research method example

Although the body of material (“content”) to be collected and analyzed can be nearly anything, most qualitative content analysis is applied to forms of human communication (e.g., media posts, news stories, campaign speeches, advertising jingles). The point of the analysis is to understand this communication, to systematically and rigorously explore its meanings, assumptions, themes, and patterns. Historical and archival sources may be the subject of content analysis, but there are other ways to analyze (“code”) this data when not overly concerned with the communicative aspect (see chapters 18 and 19). This is why we tend to consider content analysis its own method of data collection as well as a method of data analysis. Still, many of the techniques you learn in this chapter will be helpful to any “coding” scheme you develop for other kinds of qualitative data. Just remember that content analysis is a particular form with distinct aims and goals and traditions.

An Overview of the Content Analysis Process

The first step: selecting content.

Figure 17.2 is a display of possible content for content analysis. The first step in content analysis is making smart decisions about what content you will want to analyze and to clearly connect this content to your research question or general focus of research. Why are you interested in the messages conveyed in this particular content? What will the identification of patterns here help you understand? Content analysis can be fun to do, but in order to make it research, you need to fit it into a research plan.

Figure 17.1. A Non-exhaustive List of "Content" for Content Analysis

To take one example, let us imagine you are interested in gender presentations in society and how presentations of gender have changed over time. There are various forms of content out there that might help you document changes. You could, for example, begin by creating a list of magazines that are coded as being for “women” (e.g., Women’s Daily Journal ) and magazines that are coded as being for “men” (e.g., Men’s Health ). You could then select a date range that is relevant to your research question (e.g., 1950s–1970s) and collect magazines from that era. You might create a “sample” by deciding to look at three issues for each year in the date range and a systematic plan for what to look at in those issues (e.g., advertisements? Cartoons? Titles of articles? Whole articles?). You are not just going to look at some magazines willy-nilly. That would not be systematic enough to allow anyone to replicate or check your findings later on. Once you have a clear plan of what content is of interest to you and what you will be looking at, you can begin, creating a record of everything you are including as your content. This might mean a list of each advertisement you look at or each title of stories in those magazines along with its publication date. You may decide to have multiple “content” in your research plan. For each content, you want a clear plan for collecting, sampling, and documenting.

The Second Step: Collecting and Storing

Once you have a plan, you are ready to collect your data. This may entail downloading from the internet, creating a Word document or PDF of each article or picture, and storing these in a folder designated by the source and date (e.g., “ Men’s Health advertisements, 1950s”). Sølvberg ( 2021 ), for example, collected posted job advertisements for three kinds of elite jobs (economic, cultural, professional) in Sweden. But collecting might also mean going out and taking photographs yourself, as in the case of graffiti, street signs, or even what people are wearing. Chaise LaDousa, an anthropologist and linguist, took photos of “house signs,” which are signs, often creative and sometimes offensive, hung by college students living in communal off-campus houses. These signs were a focal point of college culture, sending messages about the values of the students living in them. Some of the names will give you an idea: “Boot ’n Rally,” “The Plantation,” “Crib of the Rib.” The students might find these signs funny and benign, but LaDousa ( 2011 ) argued convincingly that they also reproduced racial and gender inequalities. The data here already existed—they were big signs on houses—but the researcher had to collect the data by taking photographs.

In some cases, your content will be in physical form but not amenable to photographing, as in the case of films or unwieldy physical artifacts you find in the archives (e.g., undigitized meeting minutes or scrapbooks). In this case, you need to create some kind of detailed log (fieldnotes even) of the content that you can reference. In the case of films, this might mean watching the film and writing down details for key scenes that become your data. [2] For scrapbooks, it might mean taking notes on what you are seeing, quoting key passages, describing colors or presentation style. As you might imagine, this can take a lot of time. Be sure you budget this time into your research plan.

Researcher Note

A note on data scraping : Data scraping, sometimes known as screen scraping or frame grabbing, is a way of extracting data generated by another program, as when a scraping tool grabs information from a website. This may help you collect data that is on the internet, but you need to be ethical in how to employ the scraper. A student once helped me scrape thousands of stories from the Time magazine archives at once (although it took several hours for the scraping process to complete). These stories were freely available, so the scraping process simply sped up the laborious process of copying each article of interest and saving it to my research folder. Scraping tools can sometimes be used to circumvent paywalls. Be careful here!

The Third Step: Analysis

There is often an assumption among novice researchers that once you have collected your data, you are ready to write about what you have found. Actually, you haven’t yet found anything, and if you try to write up your results, you will probably be staring sadly at a blank page. Between the collection and the writing comes the difficult task of systematically and repeatedly reviewing the data in search of patterns and themes that will help you interpret the data, particularly its communicative aspect (e.g., What is it that is being communicated here, with these “house signs” or in the pages of Men’s Health ?).

The first time you go through the data, keep an open mind on what you are seeing (or hearing), and take notes about your observations that link up to your research question. In the beginning, it can be difficult to know what is relevant and what is extraneous. Sometimes, your research question changes based on what emerges from the data. Use the first round of review to consider this possibility, but then commit yourself to following a particular focus or path. If you are looking at how gender gets made or re-created, don’t follow the white rabbit down a hole about environmental injustice unless you decide that this really should be the focus of your study or that issues of environmental injustice are linked to gender presentation. In the second round of review, be very clear about emerging themes and patterns. Create codes (more on these in chapters 18 and 19) that will help you simplify what you are noticing. For example, “men as outdoorsy” might be a common trope you see in advertisements. Whenever you see this, mark the passage or picture. In your third (or fourth or fifth) round of review, begin to link up the tropes you’ve identified, looking for particular patterns and assumptions. You’ve drilled down to the details, and now you are building back up to figure out what they all mean. Start thinking about theory—either theories you have read about and are using as a frame of your study (e.g., gender as performance theory) or theories you are building yourself, as in the Grounded Theory tradition. Once you have a good idea of what is being communicated and how, go back to the data at least one more time to look for disconfirming evidence. Maybe you thought “men as outdoorsy” was of importance, but when you look hard, you note that women are presented as outdoorsy just as often. You just hadn’t paid attention. It is very important, as any kind of researcher but particularly as a qualitative researcher, to test yourself and your emerging interpretations in this way.

The Fourth and Final Step: The Write-Up

Only after you have fully completed analysis, with its many rounds of review and analysis, will you be able to write about what you found. The interpretation exists not in the data but in your analysis of the data. Before writing your results, you will want to very clearly describe how you chose the data here and all the possible limitations of this data (e.g., historical-trace problem or power problem; see chapter 16). Acknowledge any limitations of your sample. Describe the audience for the content, and discuss the implications of this. Once you have done all of this, you can put forth your interpretation of the communication of the content, linking to theory where doing so would help your readers understand your findings and what they mean more generally for our understanding of how the social world works. [3]

Analyzing Content: Helpful Hints and Pointers

Although every data set is unique and each researcher will have a different and unique research question to address with that data set, there are some common practices and conventions. When reviewing your data, what do you look at exactly? How will you know if you have seen a pattern? How do you note or mark your data?

Let’s start with the last question first. If your data is stored digitally, there are various ways you can highlight or mark up passages. You can, of course, do this with literal highlighters, pens, and pencils if you have print copies. But there are also qualitative software programs to help you store the data, retrieve the data, and mark the data. This can simplify the process, although it cannot do the work of analysis for you.

Qualitative software can be very expensive, so the first thing to do is to find out if your institution (or program) has a universal license its students can use. If they do not, most programs have special student licenses that are less expensive. The two most used programs at this moment are probably ATLAS.ti and NVivo. Both can cost more than $500 [4] but provide everything you could possibly need for storing data, content analysis, and coding. They also have a lot of customer support, and you can find many official and unofficial tutorials on how to use the programs’ features on the web. Dedoose, created by academic researchers at UCLA, is a decent program that lacks many of the bells and whistles of the two big programs. Instead of paying all at once, you pay monthly, as you use the program. The monthly fee is relatively affordable (less than $15), so this might be a good option for a small project. HyperRESEARCH is another basic program created by academic researchers, and it is free for small projects (those that have limited cases and material to import). You can pay a monthly fee if your project expands past the free limits. I have personally used all four of these programs, and they each have their pluses and minuses.

Regardless of which program you choose, you should know that none of them will actually do the hard work of analysis for you. They are incredibly useful for helping you store and organize your data, and they provide abundant tools for marking, comparing, and coding your data so you can make sense of it. But making sense of it will always be your job alone.

So let’s say you have some software, and you have uploaded all of your content into the program: video clips, photographs, transcripts of news stories, articles from magazines, even digital copies of college scrapbooks. Now what do you do? What are you looking for? How do you see a pattern? The answers to these questions will depend partially on the particular research question you have, or at least the motivation behind your research. Let’s go back to the idea of looking at gender presentations in magazines from the 1950s to the 1970s. Here are some things you can look at and code in the content: (1) actions and behaviors, (2) events or conditions, (3) activities, (4) strategies and tactics, (5) states or general conditions, (6) meanings or symbols, (7) relationships/interactions, (8) consequences, and (9) settings. Table 17.1 lists these with examples from our gender presentation study.

Table 17.1. Examples of What to Note During Content Analysis

One thing to note about the examples in table 17.1: sometimes we note (mark, record, code) a single example, while other times, as in “settings,” we are recording a recurrent pattern. To help you spot patterns, it is useful to mark every setting, including a notation on gender. Using software can help you do this efficiently. You can then call up “setting by gender” and note this emerging pattern. There’s an element of counting here, which we normally think of as quantitative data analysis, but we are using the count to identify a pattern that will be used to help us interpret the communication. Content analyses often include counting as part of the interpretive (qualitative) process.

In your own study, you may not need or want to look at all of the elements listed in table 17.1. Even in our imagined example, some are more useful than others. For example, “strategies and tactics” is a bit of a stretch here. In studies that are looking specifically at, say, policy implementation or social movements, this category will prove much more salient.

Another way to think about “what to look at” is to consider aspects of your content in terms of units of analysis. You can drill down to the specific words used (e.g., the adjectives commonly used to describe “men” and “women” in your magazine sample) or move up to the more abstract level of concepts used (e.g., the idea that men are more rational than women). Counting for the purpose of identifying patterns is particularly useful here. How many times is that idea of women’s irrationality communicated? How is it is communicated (in comic strips, fictional stories, editorials, etc.)? Does the incidence of the concept change over time? Perhaps the “irrational woman” was everywhere in the 1950s, but by the 1970s, it is no longer showing up in stories and comics. By tracing its usage and prevalence over time, you might come up with a theory or story about gender presentation during the period. Table 17.2 provides more examples of using different units of analysis for this work along with suggestions for effective use.

Table 17.2. Examples of Unit of Analysis in Content Analysis

Every qualitative content analysis is unique in its particular focus and particular data used, so there is no single correct way to approach analysis. You should have a better idea, however, of what kinds of things to look for and what to look for. The next two chapters will take you further into the coding process, the primary analytical tool for qualitative research in general.

Further Readings

Cidell, Julie. 2010. “Content Clouds as Exploratory Qualitative Data Analysis.” Area 42(4):514–523. A demonstration of using visual “content clouds” as a form of exploratory qualitative data analysis using transcripts of public meetings and content of newspaper articles.

Hsieh, Hsiu-Fang, and Sarah E. Shannon. 2005. “Three Approaches to Qualitative Content Analysis.” Qualitative Health Research 15(9):1277–1288. Distinguishes three distinct approaches to QCA: conventional, directed, and summative. Uses hypothetical examples from end-of-life care research.

Jackson, Romeo, Alex C. Lange, and Antonio Duran. 2021. “A Whitened Rainbow: The In/Visibility of Race and Racism in LGBTQ Higher Education Scholarship.” Journal Committed to Social Change on Race and Ethnicity (JCSCORE) 7(2):174–206.* Using a “critical summative content analysis” approach, examines research published on LGBTQ people between 2009 and 2019.

Krippendorff, Klaus. 2018. Content Analysis: An Introduction to Its Methodology . 4th ed. Thousand Oaks, CA: SAGE. A very comprehensive textbook on both quantitative and qualitative forms of content analysis.

Mayring, Philipp. 2022. Qualitative Content Analysis: A Step-by-Step Guide . Thousand Oaks, CA: SAGE. Formulates an eight-step approach to QCA.

Messinger, Adam M. 2012. “Teaching Content Analysis through ‘Harry Potter.’” Teaching Sociology 40(4):360–367. This is a fun example of a relatively brief foray into content analysis using the music found in Harry Potter films.

Neuendorft, Kimberly A. 2002. The Content Analysis Guidebook . Thousand Oaks, CA: SAGE. Although a helpful guide to content analysis in general, be warned that this textbook definitely favors quantitative over qualitative approaches to content analysis.

Schrier, Margrit. 2012. Qualitative Content Analysis in Practice . Thousand Okas, CA: SAGE. Arguably the most accessible guidebook for QCA, written by a professor based in Germany.

Weber, Matthew A., Shannon Caplan, Paul Ringold, and Karen Blocksom. 2017. “Rivers and Streams in the Media: A Content Analysis of Ecosystem Services.” Ecology and Society 22(3).* Examines the content of a blog hosted by National Geographic and articles published in The New York Times and the Wall Street Journal for stories on rivers and streams (e.g., water-quality flooding).

  • There are ways of handling content analysis quantitatively, however. Some practitioners therefore specify qualitative content analysis (QCA). In this chapter, all content analysis is QCA unless otherwise noted. ↵
  • Note that some qualitative software allows you to upload whole films or film clips for coding. You will still have to get access to the film, of course. ↵
  • See chapter 20 for more on the final presentation of research. ↵
  • . Actually, ATLAS.ti is an annual license, while NVivo is a perpetual license, but both are going to cost you at least $500 to use. Student rates may be lower. And don’t forget to ask your institution or program if they already have a software license you can use. ↵

A method of both data collection and data analysis in which a given content (textual, visual, graphic) is examined systematically and rigorously to identify meanings, themes, patterns and assumptions.  Qualitative content analysis (QCA) is concerned with gathering and interpreting an existing body of material.    

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Content Analysis | A Step-by-Step Guide with Examples

Published on 5 May 2022 by Amy Luo . Revised on 5 December 2022.

Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, oral, or visual:

  • Books, newspapers, and magazines
  • Speeches and interviews
  • Web content and social media posts
  • Photographs and films

Content analysis can be both quantitative (focused on counting and measuring) and qualitative (focused on interpreting and understanding). In both types, you categorise or ‘code’ words, themes, and concepts within the texts and then analyse the results.

Table of contents

What is content analysis used for, advantages of content analysis, disadvantages of content analysis, how to conduct content analysis.

Researchers use content analysis to find out about the purposes, messages, and effects of communication content. They can also make inferences about the producers and audience of the texts they analyse.

Content analysis can be used to quantify the occurrence of certain words, phrases, subjects, or concepts in a set of historical or contemporary texts.

In addition, content analysis can be used to make qualitative inferences by analysing the meaning and semantic relationship of words and concepts.

Because content analysis can be applied to a broad range of texts, it is used in a variety of fields, including marketing, media studies, anthropology, cognitive science, psychology, and many social science disciplines. It has various possible goals:

  • Finding correlations and patterns in how concepts are communicated
  • Understanding the intentions of an individual, group, or institution
  • Identifying propaganda and bias in communication
  • Revealing differences in communication in different contexts
  • Analysing the consequences of communication content, such as the flow of information or audience responses

Prevent plagiarism, run a free check.

  • Unobtrusive data collection

You can analyse communication and social interaction without the direct involvement of participants, so your presence as a researcher doesn’t influence the results.

  • Transparent and replicable

When done well, content analysis follows a systematic procedure that can easily be replicated by other researchers, yielding results with high reliability .

  • Highly flexible

You can conduct content analysis at any time, in any location, and at low cost. All you need is access to the appropriate sources.

Focusing on words or phrases in isolation can sometimes be overly reductive, disregarding context, nuance, and ambiguous meanings.

Content analysis almost always involves some level of subjective interpretation, which can affect the reliability and validity of the results and conclusions.

  • Time intensive

Manually coding large volumes of text is extremely time-consuming, and it can be difficult to automate effectively.

If you want to use content analysis in your research, you need to start with a clear, direct  research question .

Next, you follow these five steps.

Step 1: Select the content you will analyse

Based on your research question, choose the texts that you will analyse. You need to decide:

  • The medium (e.g., newspapers, speeches, or websites) and genre (e.g., opinion pieces, political campaign speeches, or marketing copy)
  • The criteria for inclusion (e.g., newspaper articles that mention a particular event, speeches by a certain politician, or websites selling a specific type of product)
  • The parameters in terms of date range, location, etc.

If there are only a small number of texts that meet your criteria, you might analyse all of them. If there is a large volume of texts, you can select a sample .

Step 2: Define the units and categories of analysis

Next, you need to determine the level at which you will analyse your chosen texts. This means defining:

  • The unit(s) of meaning that will be coded. For example, are you going to record the frequency of individual words and phrases, the characteristics of people who produced or appear in the texts, the presence and positioning of images, or the treatment of themes and concepts?
  • The set of categories that you will use for coding. Categories can be objective characteristics (e.g., aged 30–40, lawyer, parent) or more conceptual (e.g., trustworthy, corrupt, conservative, family-oriented).

Step 3: Develop a set of rules for coding

Coding involves organising the units of meaning into the previously defined categories. Especially with more conceptual categories, it’s important to clearly define the rules for what will and won’t be included to ensure that all texts are coded consistently.

Coding rules are especially important if multiple researchers are involved, but even if you’re coding all of the text by yourself, recording the rules makes your method more transparent and reliable.

Step 4: Code the text according to the rules

You go through each text and record all relevant data in the appropriate categories. This can be done manually or aided with computer programs, such as QSR NVivo , Atlas.ti , and Diction , which can help speed up the process of counting and categorising words and phrases.

Step 5: Analyse the results and draw conclusions

Once coding is complete, the collected data is examined to find patterns and draw conclusions in response to your research question. You might use statistical analysis to find correlations or trends, discuss your interpretations of what the results mean, and make inferences about the creators, context, and audience of the texts.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Luo, A. (2022, December 05). Content Analysis | A Step-by-Step Guide with Examples. Scribbr. Retrieved 29 October 2024, from https://www.scribbr.co.uk/research-methods/content-analysis-explained/

Is this article helpful?

Amy Luo

Other students also liked

How to do thematic analysis | guide & examples, data collection methods | step-by-step guide & examples, qualitative vs quantitative research | examples & methods.

  • What is content analysis?

Last updated

20 March 2023

Reviewed by

Miroslav Damyanov

When you're conducting qualitative research, you'll find yourself analyzing various texts. Perhaps you'll be evaluating transcripts from audio interviews you've conducted. Or you may find yourself assessing the results of a survey filled with open-ended questions.

Streamline content analysis

Bring all your qualitative research into one place to code and analyze with Dovetail

Content analysis is a research method used to identify the presence of various concepts, words, and themes in different texts. Two types of content analysis exist: conceptual analysis and relational analysis . In the former, researchers determine whether and how frequently certain concepts appear in a text. In relational analysis, researchers explore how different concepts are related to one another in a text. 

Both types of content analysis require the researcher to code the text. Coding the text means breaking it down into different categories that allow it to be analyzed more easily.

  • What are some common uses of content analysis?

You can use content analysis to analyze many forms of text, including:

Interview and discussion transcripts

Newspaper articles and headline

Literary works

Historical documents

Government reports

Academic papers

Music lyrics

Researchers commonly use content analysis to draw insights and conclusions from literary works. Historians and biographers may apply this approach to letters, papers, and other historical documents to gain insight into the historical figures and periods they are writing about. Market researchers can also use it to evaluate brand performance and perception.

Some researchers have used content analysis to explore differences in decision-making and other cognitive processes. While researchers traditionally used this approach to explore human cognition, content analysis is also at the heart of machine learning approaches currently being used and developed by software and AI companies.

  • Conducting a conceptual analysis

Conceptual analysis is more commonly associated with content analysis than relational analysis. 

In conceptual analysis, you're looking for the appearance and frequency of different concepts. Why? This information can help further your qualitative or quantitative analysis of a text. It's an inexpensive and easily understood research method that can help you draw inferences and conclusions about your research subject. And while it is a relatively straightforward analytical tool, it does consist of a multi-step process that you must closely follow to ensure the reliability and validity of your study.

When you're ready to conduct a conceptual analysis, refer to your research question and the text. Ask yourself what information likely found in the text is relevant to your question. You'll need to know this to determine how you'll code the text. Then follow these steps:

1. Determine whether you're looking for explicit terms or implicit terms.

Explicit terms are those that directly appear in the text, while implicit ones are those that the text implies or alludes to or that you can infer. 

Coding for explicit terms is straightforward. For example, if you're looking to code a text for an author's explicit use of color,  you'd simply code for every instance a color appears in the text. However, if you're coding for implicit terms, you'll need to determine and define how you're identifying the presence of the term first. Doing so involves a certain amount of subjectivity and may impinge upon the reliability and validity of your study .

2. Next, identify the level at which you'll conduct your analysis.

You can search for words, phrases, or sentences encapsulating your terms. You can also search for concepts and themes, but you'll need to define how you expect to identify them in the text. You must also define rules for how you'll code different terms to reduce ambiguity. For example, if, in an interview transcript, a person repeats a word one or more times in a row as a verbal tic, should you code it more than once? And what will you do with irrelevant data that appears in a term if you're coding for sentences? 

Defining these rules upfront can help make your content analysis more efficient and your final analysis more reliable and valid.

3. You'll need to determine whether you're coding for a concept or theme's existence or frequency.

If you're coding for its existence, you’ll only count it once, at its first appearance, no matter how many times it subsequently appears. If you're searching for frequency, you'll count the number of its appearances in the text.

4. You'll also want to determine the number of terms you want to code for and how you may wish to categorize them.

For example, say you're conducting a content analysis of customer service call transcripts and looking for evidence of customer dissatisfaction with a product or service. You might create categories that refer to different elements with which customers might be dissatisfied, such as price, features, packaging, technical support, and so on. Then you might look for sentences that refer to those product elements according to each category in a negative light.

5. Next, you'll need to develop translation rules for your codes.

Those rules should be clear and consistent, allowing you to keep track of your data in an organized fashion.

6. After you've determined the terms for which you're searching, your categories, and translation rules, you're ready to code.

You can do so by hand or via software. Software is quite helpful when you have multiple texts. But it also becomes more vital for you to have developed clear codes, categories, and translation rules, especially if you're looking for implicit terms and concepts. Otherwise, your software-driven analysis may miss key instances of the terms you seek.

7. When you have your text coded, it's time to analyze it.

Look for trends and patterns in your results and use them to draw relevant conclusions about your research subject.

  • Conducting a relational analysis

In a relational analysis, you're examining the relationship between different terms that appear in your text(s). To do so requires you to code your texts in a similar fashion as in a relational analysis. However, depending on the type of relational analysis you're trying to conduct, you may need to follow slightly different rules.

Three types of relational analyses are commonly used: affect extraction , proximity analysis , and cognitive mapping .

Affect extraction

This type of relational analysis involves evaluating the different emotional concepts found in a specific text. While the insights from affect extraction can be invaluable, conducting it may prove difficult depending on the text. For example, if the text captures people's emotional states at different times and from different populations, you may find it difficult to compare them and draw appropriate inferences.

Proximity analysis

A relatively simpler analytical approach than affect extraction, proximity analysis assesses the co-occurrence of explicit concepts in a text. You can create what's known as a concept matrix, which is a group of interrelated co-occurring concepts. Concept matrices help evaluate and determine the overall meaning of a text or the identification of a secondary message or theme.

Cognitive mapping

You can use cognitive mapping as a way to visualize the results of either affect extraction or proximity analysis. This technique uses affect extraction or proximity analysis results to create a graphic map illustrating the relationship between co-occurring emotions or concepts.

To conduct a relational analysis, you must start by determining the type of analysis that best fits the study: affect extraction or proximity analysis. 

Complete steps one through six as outlined above. When it comes to the seventh step, analyze the text according to the relational analysis type they've chosen. During this step, feel free to use cognitive mapping to help draw inferences and conclusions about the relationships between co-occurring emotions or concepts. And use other tools, such as mental modeling and decision mapping as necessary, to analyze the results.

  • The advantages of content analysis

Content analysis provides researchers with a robust and inexpensive method to qualitatively and quantitatively analyze a text. By coding the data, you can perform statistical analyses of the data to affirm and reinforce conclusions you may draw. And content analysis can provide helpful insights into language use, behavioral patterns, and historical or cultural conventions that can be valuable beyond the scope of the initial study.

When content analyses are applied to interview data, the approach provides a way to closely analyze data without needing interview-subject interaction, which can be helpful in certain contexts. For example, suppose you want to analyze the perceptions of a group of geographically diverse individuals. In this case, you can conduct a content analysis of existing interview transcripts rather than assuming the time and expense of conducting new interviews.

What is meant by content analysis?

Content analysis is a research method that helps a researcher explore the occurrence of and relationships between various words, phrases, themes, or concepts in a text or set of texts. The method allows researchers in different disciplines to conduct qualitative and quantitative analyses on a variety of texts.

Where is content analysis used?

Content analysis is used in multiple disciplines, as you can use it to evaluate a variety of texts. You can find applications in anthropology, communications, history, linguistics, literary studies, marketing, political science, psychology, and sociology, among other disciplines.

What are the two types of content analysis?

Content analysis may be either conceptual or relational. In a conceptual analysis, researchers examine a text for the presence and frequency of specific words, phrases, themes, and concepts. In a relational analysis, researchers draw inferences and conclusions about the nature of the relationships of co-occurring words, phrases, themes, and concepts in a text.

What's the difference between content analysis and thematic analysis?

Content analysis typically uses a descriptive approach to the data and may use either qualitative or quantitative analytical methods. By contrast, a thematic analysis only uses qualitative methods to explore frequently occurring themes in a text.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 24 October 2024

Last updated: 11 January 2024

Last updated: 17 January 2024

Last updated: 12 December 2023

Last updated: 30 April 2024

Last updated: 4 July 2024

Last updated: 12 October 2023

Last updated: 5 March 2024

Last updated: 6 March 2024

Last updated: 31 January 2024

Last updated: 23 January 2024

Last updated: 13 May 2024

Last updated: 20 December 2023

Latest articles

Related topics, decide what to build next, log in or sign up.

Get started for free

Reference management. Clean and simple.

How to do a content analysis

Content analysis illustration

What is content analysis?

Why would you use a content analysis, types of content analysis, conceptual content analysis, relational content analysis, reliability and validity, reliability, the advantages and disadvantages of content analysis, a step-by-step guide to conducting a content analysis, step 1: develop your research questions, step 2: choose the content you’ll analyze, step 3: identify your biases, step 4: define the units and categories of coding, step 5: develop a coding scheme, step 6: code the content, step 7: analyze the results, frequently asked questions about content analysis, related articles.

In research, content analysis is the process of analyzing content and its features with the aim of identifying patterns and the presence of words, themes, and concepts within the content. Simply put, content analysis is a research method that aims to present the trends, patterns, concepts, and ideas in content as objective, quantitative or qualitative data , depending on the specific use case.

As such, some of the objectives of content analysis include:

  • Simplifying complex, unstructured content.
  • Identifying trends, patterns, and relationships in the content.
  • Determining the characteristics of the content.
  • Identifying the intentions of individuals through the analysis of the content.
  • Identifying the implied aspects in the content.

Typically, when doing a content analysis, you’ll gather data not only from written text sources like newspapers, books, journals, and magazines but also from a variety of other oral and visual sources of content like:

  • Voice recordings, speeches, and interviews.
  • Web content, blogs, and social media content.
  • Films, videos, and photographs.

One of content analysis’s distinguishing features is that you'll be able to gather data for research without physically gathering data from participants. In other words, when doing a content analysis, you don't need to interact with people directly.

The process of doing a content analysis usually involves categorizing or coding concepts, words, and themes within the content and analyzing the results. We’ll look at the process in more detail below.

Typically, you’ll use content analysis when you want to:

  • Identify the intentions, communication trends, or communication patterns of an individual, a group of people, or even an institution.
  • Analyze and describe the behavioral and attitudinal responses of individuals to communications.
  • Determine the emotional or psychological state of an individual or a group of people.
  • Analyze the international differences in communication content.
  • Analyzing audience responses to content.

Keep in mind, though, that these are just some examples of use cases where a content analysis might be appropriate and there are many others.

The key thing to remember is that content analysis will help you quantify the occurrence of specific words, phrases, themes, and concepts in content. Moreover, it can also be used when you want to make qualitative inferences out of the data by analyzing the semantic meanings and interrelationships between words, themes, and concepts.

In general, there are two types of content analysis: conceptual and relational analysis . Although these two types follow largely similar processes, their outcomes differ. As such, each of these types can provide different results, interpretations, and conclusions. With that in mind, let’s now look at these two types of content analysis in more detail.

With conceptual analysis, you’ll determine the existence of certain concepts within the content and identify their frequency. In other words, conceptual analysis involves the number of times a specific concept appears in the content.

Conceptual analysis is typically focused on explicit data, which means you’ll focus your analysis on a specific concept to identify its presence in the content and determine its frequency.

However, when conducting a content analysis, you can also use implicit data. This approach is more involved, complicated, and requires the use of a dictionary, contextual translation rules, or a combination of both.

No matter what type you use, conceptual analysis brings an element of quantitive analysis into a qualitative approach to research.

Relational content analysis takes conceptual analysis a step further. So, while the process starts in the same way by identifying concepts in content, it doesn’t focus on finding the frequency of these concepts, but rather on the relationships between the concepts, the context in which they appear in the content, and their interrelationships.

Before starting with a relational analysis, you’ll first need to decide on which subcategory of relational analysis you’ll use:

  • Affect extraction: With this relational content analysis approach, you’ll evaluate concepts based on their emotional attributes. You’ll typically assess these emotions on a rating scale with higher values assigned to positive emotions and lower values to negative ones. In turn, this allows you to capture the emotions of the writer or speaker at the time the content is created. The main difficulty with this approach is that emotions can differ over time and across populations.
  • Proximity analysis: With this approach, you’ll identify concepts as in conceptual analysis, but you’ll evaluate the way in which they occur together in the content. In other words, proximity analysis allows you to analyze the relationship between concepts and derive a concept matrix from which you’ll be able to develop meaning. Proximity analysis is typically used when you want to extract facts from the content rather than contextual, emotional, or cultural factors.
  • Cognitive mapping: Finally, cognitive mapping can be used with affect extraction or proximity analysis. It’s a visualization technique that allows you to create a model that represents the overall meaning of content and presents it as a graphic map of the relationships between concepts. As such, it’s also commonly used when analyzing the changes in meanings, definitions, and terms over time.

Now that we’ve seen what content analysis is and looked at the different types of content analysis, it’s important to understand how reliable it is as a research method . We’ll also look at what criteria impact the validity of a content analysis.

There are three criteria that determine the reliability of a content analysis:

  • Stability . Stability refers to the tendency of coders to consistently categorize or code the same data in the same way over time.
  • Reproducibility . This criterion refers to the tendency of coders to classify categories membership in the same way.
  • Accuracy . Accuracy refers to the extent to which the classification of content corresponds to a specific standard.

Keep in mind, though, that because you’ll need to code or categorize the concepts you’ll aim to identify and analyze manually, you’ll never be able to eliminate human error. However, you’ll be able to minimize it.

In turn, three criteria determine the validity of a content analysis:

  • Closeness of categories . This is achieved by using multiple classifiers to get an agreed-upon definition for a specific category by using either implicit variables or synonyms. In this way, the category can be broadened to include more relevant data.
  • Conclusions . Here, it’s crucial to decide what level of implication will be allowable. In other words, it’s important to consider whether the conclusions are valid based on the data or whether they can be explained using some other phenomena.
  • Generalizability of the results of the analysis to a theory . Generalizability comes down to how you determine your categories as mentioned above and how reliable those categories are. In turn, this relies on how accurately the categories are at measuring the concepts or ideas that you’re looking to measure.

Considering everything mentioned above, there are definite advantages and disadvantages when it comes to content analysis:

Let’s now look at the steps you’ll need to follow when doing a content analysis.

The first step will always be to formulate your research questions. This is simply because, without clear and defined research questions, you won’t know what question to answer and, by implication, won’t be able to code your concepts.

Based on your research questions, you’ll then need to decide what content you’ll analyze. Here, you’ll use three factors to find the right content:

  • The type of content . Here you’ll need to consider the various types of content you’ll use and their medium like, for example, blog posts, social media, newspapers, or online articles.
  • What criteria you’ll use for inclusion . Here you’ll decide what criteria you’ll use to include content. This can, for instance, be the mentioning of a certain event or advertising a specific product.
  • Your parameters . Here, you’ll decide what content you’ll include based on specified parameters in terms of date and location.

The next step is to consider your own pre-conception of the questions and identify your biases. This process is referred to as bracketing and allows you to be aware of your biases before you start your research with the result that they’ll be less likely to influence the analysis.

Your next step would be to define the units of meaning that you’ll code. This will, for example, be the number of times a concept appears in the content or the treatment of concept, words, or themes in the content. You’ll then need to define the set of categories you’ll use for coding which can be either objective or more conceptual.

Based on the above, you’ll then organize the units of meaning into your defined categories. Apart from this, your coding scheme will also determine how you’ll analyze the data.

The next step is to code the content. During this process, you’ll work through the content and record the data according to your coding scheme. It’s also here where conceptual and relational analysis starts to deviate in relation to the process you’ll need to follow.

As mentioned earlier, conceptual analysis aims to identify the number of times a specific concept, idea, word, or phrase appears in the content. So, here, you’ll need to decide what level of analysis you’ll implement.

In contrast, with relational analysis, you’ll need to decide what type of relational analysis you’ll use. So, you’ll need to determine whether you’ll use affect extraction, proximity analysis, cognitive mapping, or a combination of these approaches.

Once you’ve coded the data, you’ll be able to analyze it and draw conclusions from the data based on your research questions.

Content analysis offers an inexpensive and flexible way to identify trends and patterns in communication content. In addition, it’s unobtrusive which eliminates many ethical concerns and inaccuracies in research data. However, to be most effective, a content analysis must be planned and used carefully in order to ensure reliability and validity.

The two general types of content analysis: conceptual and relational analysis . Although these two types follow largely similar processes, their outcomes differ. As such, each of these types can provide different results, interpretations, and conclusions.

In qualitative research coding means categorizing concepts, words, and themes within your content to create a basis for analyzing the results. While coding, you work through the content and record the data according to your coding scheme.

Content analysis is the process of analyzing content and its features with the aim of identifying patterns and the presence of words, themes, and concepts within the content. The goal of a content analysis is to present the trends, patterns, concepts, and ideas in content as objective, quantitative or qualitative data, depending on the specific use case.

Content analysis is a qualitative method of data analysis and can be used in many different fields. It is particularly popular in the social sciences.

It is possible to do qualitative analysis without coding, but content analysis as a method of qualitative analysis requires coding or categorizing data to then analyze it according to your coding scheme in the next step.

content analysis research method example

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • Sign in to my profile My Profile

Not Logged In

The Content Analysis Guidebook

  • Edition: Second
  • By: Kimberly A. Neuendorf
  • Publisher: SAGE Publications, Inc
  • Publication year: 2017
  • Online pub date: December 20, 2019
  • Discipline: Communication and Media Studies
  • Methods: Content analysis , Measurement , Coding
  • DOI: https:// doi. org/10.4135/9781071802878
  • Keywords: coding schemes , dictionaries , films , interactive media , population , social media , web sites Show all Show less
  • Print ISBN: 9781412979474
  • Online ISBN: 9781071802878
  • Buy the book icon link

Subject index

Content analysis is one of the most important but complex research methodologies in the social sciences. In this thoroughly updated Second Edition of The Content Analysis Guidebook, author Kimberly Neuendorf draws on examples from across numerous disciplines to clarify the complicated aspects of content analysis through step-by-step instruction and practical advice. Throughout the book, the author also describes a wide range of innovative content analysis projects from both academia and commercial research that provide readers with a deeper understanding of the research process and its many real-world applications.

Front Matter

  • List of Boxes
  • List of Tables and Figures
  • Acknowledgments
  • Chapter 1 | Defining Content Analysis
  • Chapter 2 | An Integrative Approach to Content Analysis
  • Chapter 3 | Message Units and Sampling
  • Chapter 4 | Variables and Predictions
  • Chapter 5 | Measurement and Validity
  • Chapter 6 | Reliability
  • Chapter 7 | Content Analysis in the Interactive Media Age
  • Chapter 8 | Results and Reporting
  • Chapter 9 | Contexts

Back Matter

  • Resource 1: CATA—Computer-Aided Text Analysis Options
  • Resource 2: The Content Analysis Guidebook Online (CAGO)
  • Author Index
  • About the Authors

Sign in to access this content

Get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

  • Sign in/register

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Please sign into your institution before accessing your profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Learning Resources has to offer.

  • view my profile
  • view my lists

helpful professor logo

10 Content Analysis Examples

10 Content Analysis Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

content analysis example and definition, explained below

Content analysis is a research method and type of textual analysis that analyzes the meanings of content , which could take the form of textual, visual, aural, and otherwise multimodal texts.

Generally, a content analysis will seek meanings and relationships of certain words and concepts within the text or corpus of texts, and generate thematic data that reveals deeper insights into the text’s meanings.

Prasad (2008) defines it as:

:…the study of the content with reference to the meanings, contexts and intentions contained in messages.” (p. 174)

Content analyses can involve deductive coding , where themes and concepts are asserted before the content is created; or, they can involve inductive coding , where themes and concepts emerge during a close reading of the text.

An example of a content analysis would be a study that analyzes the presence of ideological words and phrases in newspapers to ascertain the editorial team’s political biases.

Content Analysis Examples

1. conceptual analysis.

Also called semantic content analysis, a conceptual analysis selects a concept and tries to count its occurrence within a text (Kosterec, 2016).

An example of a concept that you might examine is sentiment, such as positive, negative, and neutral sentiment. Here, you would need to conduct a semantic study of the text to find instances of words like ‘bad’, ‘terrible’, etc. for negative sentiment, and ‘good’, ‘great’, etc. for positive sentiment. A compare and contrast will demonstrate a balance of sentiment within the text.

A basic conceptual analysis has the weakness of lacking the capacity to read words in context, which would require a deeper qualitative analysis of paragraphs, which is offset by other types of analysis in this list.

Example of Conceptual Analysis

A company launches a new product and wants to understand the public’s initial reactions to it. They use conceptual analysis to analyze comments on their social media posts about the product. They could choose specific concepts such as “like”, “dislike”, “awesome”, “terrible”, etc. The frequency of these words in the comments give them an idea about the public’s sentiment towards the product.

2. Relational Analysis

Relational analysis addresses the above-mentioned weakness of conceptual analysis (i.e. that a mere counting of instances of terms lacks context) by examining how concepts in a text relate to one another .

Here, a scholar might analyze the overlap or sequences between certain concepts and sentiments in language (Kosterec, 2016). To combine the two examples from the above conceptual analysis, a scholar might examine all of a particular masthead newspaper’s columns on global warming. In the study, they would examine the proximity between the word ‘global warming’ and positive, negative, and neutral sentiment words (‘good’, ‘bad’, ‘great’, etc.) to ascertain the newspaper’s sentiment toward a specific concept .

Example of Relational Analysis

A political scientist wants to understand the relationship between the use of emotional rhetoric and audience reaction in political speeches. They carry out a relational analysis on a corpus of speeches and corresponding audience feedback. By exploring the co-occurrence of emotive words (“hope”, “fear”, “pride”) and audience responses (“applause”, “boos”, “silence”), they discover patterns in how different types of emotional language affect audience reactions.

3. Thematic Analysis

A thematic analysis focuses on identifying themes or major ideas running throughout the text.

This can follow a range of strategies, spanning from highly quantitative – such as using statistical software to thematically group words and terms – through to highly qualitative, where trained researchers take notes on each paragraph to extract key ideas that can be thematicized.

Many literature reviews take the form of a thematic analysis, where the scholar reads all recent studies on a topic and tries to ascertain themes, as well as gaps, across the recent literature.

Example of Thematic Analysis

A scholar searches on research bases for all published academic papers containing the keyword “back pain” from the past 10 years. She then uses inductive coding to generate themes that span the studies. From this thematic analysis, she produces a literature review on key emergent themes from the literature on back pain, as well as gaps in the research.

4. Narrative Analysis

This involves a close reading of the framing and structure of narrative elements within content. It can examine personal life stories, biographies, journals, and so on.

In literary research, this method generally explores the elements of the story , such as characters, plot, literary themes , and settings. But in life history research, it will generally involve deconstructing a real person’s life story, analyzing their perspectives and worldview to develop insights into their unique situation, life circumstances, or personality.

The focus generally expands out from the story itself to what it can tell us about the individuals or culture from which it originates.

Example of Narrative Analysis

A social work researcher takes a group of their patients’ personal journals and, after obtaining ethics clearance and permission from the patients, deconstructs the underlying messages in their journals in order to extract an understanding of the core mental hurdles each patient faces, which are then analyzed through the lens of Jungian psychoanalysis.

5. Discourse Analysis

Discourse analysis, the research methodology from which I conducted my PhD studies, involves the study of how language can create and reproduce social realities.

Based on the work of postmodern scholars such as Michel Foucault and Jaques Derrida, it attempts to deconstruct how texts normalize ways of thinking within specific historical, cultural, and social contexts .

Foucault, the most influential scholar in discourse analytic research, demonstrated through the study of how society spoke about madness that different societies constructed madness in different ways: in the renaissance era, mad people we spoken of as wise people, during the classical era, language changed, and they were framed as pariahs. Finally, in the modern era, they were spoken about as if they were sick.

Following Foucault (1988), many content analysis scholars now look at the differing ways societies frame different identities (gender, race, social class, etc.) in different times – and this can be revealed by looking at the language used in the content (i.e. the texts) produced throughout different eras (Johnstone, 2017).

Example of Discourse Analysis

A scholar examines a corpus of immigration speeches from a specific political party from the past 10 years and examines how refugees are discussed in the speeches, with a focus on how language constructs and defines refugees. It finds that refugees appear to be constructed as threats, dirty, and nefarious.

See Here for 10 More Examples of Discourse Analysis

6. Multimodal Analysis 

As audiovisual texts became more important in society, many scholars began to critique the fact that content analysis tends to only look at written texts. In response, a methodology called multimodal analysis emerged.

In multimodal analysis, scholars don’t just decode the meanings in written texts, but also in multimodal texts . This involves the study of the signs, symbols, movements, and sounds that are within the text.

This opens up space for the analysis of television advertisements, billboards, and so forth.

For an example, a multimodal analysis of a television advertisement might not just study what is said, but it’ll explore how the camera angles frame some people as powerful (low to high angle) and some people as weak (high to low angle). Similarly, they may examine the colors to see if a character is positioned as sad (dark colors, walking through rain) or joyful (bright colors, sunshine).

Example of Multimodal Analysis

A cultural studies scholar examines the representation of Gender in Disney films, looking not only at the spoken words, but also the dresses worn, the camera angles, and the princesses’ tone of voice when speaking to other characters to assess how Disney’s construction of gender has changed over time.

7. Semiotic Analysis

Semiotic analysis takes multimodal analysis to the next step by providing the specific methods for the analysis of multimodal texts.

Seminal scholars Kress and van Leeuwen (2006) have created a significant repertoire of texts demonstrating how semiotics shape meaning. In their works, they present deconstructions of various modes of address:

  • Visual: How images, signs, and symbols create meaning in social contexts. For example, in our modern world, a red octagon has a specific social meaning: stop!
  • Textual: How words shape meaning, such as through a sentiment analysis as discussed earlier.
  • Motive: How movement can create a sense of pace, distance, the movement of time, and so forth, which shapes meaning.
  • Aural: How sounds shape meaning. For example, the words spoken are not the only way we interpret a speech, but also how they’re spoken (shakily, confidently, assertively, etc.)

Example of Semiotic Analysis

A communications studies scholar examines the body language of leaders during meetings at an international political event, using it to explore how the leaders subtly send messages about who they are allied with, where they view themselves in geopolitical terms, and their attitudes toward the event overall.

8. Latent Content Analysis

This involves the interpretation of the underlying, inferred meanings of the words or visuals. The focus here is on what is being implied by the content rather than just what is explicitly said.

For example, in the context of the same newspaper articles, a latent content analysis might examine the way the event is framed, the language or rhetoric used, the themes or narratives that are implied, or the attitudes and ideologies that are expressed or endorsed, either overtly or covertly .

Returning to the work of Foucault, he demonstrated how silence also constructs meaning. The question emerges: what is left unsaid in the content, and how does this shape our understanding of the biases and assumptions of the author?

Example of Latent Content Analysis

A sociologist studying gender roles in films watches the top 10 movies from last year and doesn’t just count instances of words – rather, they analyze the underlying, implicit messages about gender roles. This could include exploring how female characters are portrayed (do they tend to be passive and in need of rescue, or are they active, independent and resourceful?) and how male characters are portrayed (emotional or unemotional?) What kind of occupations do characters of each gender typically have?

9. Manifest Content Analysis

A manifest content analysis is the counterpoint to latent content analysis. It involves a direct and surface-level reading of the visible aspects of the content.

It concerns itself primarily with what is visible, obvious and countable. This approach asserts that we should not read too deeply into anything beyond what is manifest (i.e. present), because the deeper we try to read into the missing or latent elements, the more we stray into the real of guessing and assuming.

Scholars will often do both latent and manifest content analyses side-by-side, exploring how each type of analysis might reveal different interpretations or insights.

Example of Manifest Content Analysis

A researcher is interested in studying bias in media coverage of a particular political event. They might conduct a conceptual analysis where the concept is the tone of language used – positive, neutral, or negative. They would examine a number of articles from different newspapers, tallying up instances of positive, negative, or neutral language to see if there is a bias towards positivity or negativity in coverage of the event.

10. Longitudinal Content Analysis

A longitudinal content analysis analyzes trends in content over a long period of time.

Earlier, I explored the idea in discourse analysis that different eras have different ideas about terms and concepts (consider, for example, evolving ideas of gender and race). A longitudinal analysis would be very useful here. It would involve collecting cross-sectional moments in time , at varying points in time, which would then be compared and contrasted for the representation of varying concepts and terms.

Example of Longitudinal Content Analsis

A scholar might look at newspaper reports on texts from each decade for 100 years, examining environmental terms (‘global warming’, ‘climate change’, ‘recycling’) to identify when and how environmental concepts entered public discourse.

For other Examples of Analysis, See Here

Content analysis is a form of empirical research that uses texts rather than interviews or naturalistic observation to gather data that can then be analyzed. There are a range of methods and approaches to the analysis of content, but their unifying feature is that they involve close readings of texts to identify concepts and themes that might be revealing of core or underlying messages within the content.

The above examples are not mutually exclusive types, but rather different approaches that researchers can use based on their specific goals and the nature of the data they are working with.

Foucault, M. (1988). Madness and civilization: A history of insanity in the age of reason . London: Vintage.

Johnstone, B. (2017). Discourse analysis . London: John Wiley & Sons.

Kosterec, M. (2016). Methods of conceptual analysis. Filozofia , 71 (3).

Kress, G., & Van Leeuwen, T. (2006). The grammar of visual design . London and New York: Routledge.

Prasad, B. D. (2008). Content analysis: A method of Social Science Research . In D.K. Lal Das (ed) Research Methods for Social Work, (pp.174-193). New Delhi: Rawat Publications.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Search Menu
  • Sign in through your institution
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Language Acquisition
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Culture
  • Music and Religion
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Meta-Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Science
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Society
  • Law and Politics
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Games
  • Computer Security
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business History
  • Business Strategy
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Methodology
  • Economic Systems
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Research Methodology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Qualitative Research (2nd edn)

  • < Previous chapter
  • Next chapter >

19 Content Analysis

Lindsay Prior, School of Sociology, Social Policy, and Social Work, Queen's University

  • Published: 02 September 2020
  • Cite Icon Cite
  • Permissions Icon Permissions

In this chapter, the focus is on ways in which content analysis can be used to investigate and describe interview and textual data. The chapter opens with a contextualization of the method and then proceeds to an examination of the role of content analysis in relation to both quantitative and qualitative modes of social research. Following the introductory sections, four kinds of data are subjected to content analysis. These include data derived from a sample of qualitative interviews ( N = 54), textual data derived from a sample of health policy documents ( N = 6), data derived from a single interview relating to a “case” of traumatic brain injury, and data gathered from fifty-four abstracts of academic papers on the topic of “well-being.” Using a distinctive and somewhat novel style of content analysis that calls on the notion of semantic networks, the chapter shows how the method can be used either independently or in conjunction with other forms of inquiry (including various styles of discourse analysis) to analyze data and also how it can be used to verify and underpin claims that arise from analysis. The chapter ends with an overview of the different ways in which the study of “content”—especially the study of document content—can be positioned in social scientific research projects.

What Is Content Analysis?

In his 1952 text on the subject of content analysis, Bernard Berelson traced the origins of the method to communication research and then listed what he called six distinguishing features of the approach. As one might expect, the six defining features reflect the concerns of social science as taught in the 1950s, an age in which the calls for an “objective,” “systematic,” and “quantitative” approach to the study of communication data were first heard. The reference to the field of “communication” was nothing less than a reflection of a substantive social scientific interest over the previous decades in what was called public opinion and specifically attempts to understand why and how a potential source of critical, rational judgment on political leaders (i.e., the views of the public) could be turned into something to be manipulated by dictators and demagogues. In such a context, it is perhaps not so surprising that in one of the more popular research methods texts of the decade, the terms content analysis and communication analysis are used interchangeably (see Goode & Hatt, 1952 , p. 325).

Academic fashions and interests naturally change with available technology, and these days we are more likely to focus on the individualization of communications through Twitter and the like, rather than of mass newspaper readership or mass radio audiences, yet the prevailing discourse on content analysis has remained much the same as it was in Berleson’s day. Thus, Neuendorf ( 2002 ), for example, continued to define content analysis as “the systematic, objective, quantitative analysis of message characteristics” (p. 1). Clearly, the centrality of communication as a basis for understanding and using content analysis continues to hold, but in this chapter I will try to show that, rather than locate the use of content analysis in disembodied “messages” and distantiated “media,” we would do better to focus on the fact that communication is a building block of social life itself and not merely a system of messages that are transmitted—in whatever form—from sender to receiver. To put that statement in another guise, we must note that communicative action (to use the phraseology of Habermas, 1987 ) rests at the very base of the lifeworld, and one very important way of coming to grips with that world is to study the content of what people say and write in the course of their everyday lives.

My aim is to demonstrate various ways in which content analysis (henceforth CTA) can be used and developed to analyze social scientific data as derived from interviews and documents. It is not my intention to cover the history of CTA or to venture into forms of literary analysis or to demonstrate each and every technique that has ever been deployed by content analysts. (Many of the standard textbooks deal with those kinds of issues much more fully than is possible here. See, for example, Babbie, 2013 ; Berelson, 1952 ; Bryman, 2008 , Krippendorf, 2004 ; Neuendorf, 2002 ; and Weber, 1990 ). Instead, I seek to recontextualize the use of the method in a framework of network thinking and to link the use of CTA to specific problems of data analysis. As will become evident, my exposition of the method is grounded in real-world problems. Those problems are drawn from my own research projects and tend to reflect my academic interests—which are almost entirely related to the analysis of the ways in which people talk and write about aspects of health, illness, and disease. However, lest the reader be deterred from going any further, I should emphasize that the substantive issues that I elect to examine are secondary if not tertiary to my main objective—which is to demonstrate how CTA can be integrated into a range of research designs and add depth and rigor to the analysis of interview and inscription data. To that end, in the next section I aim to clear our path to analysis by dealing with some issues that touch on the general position of CTA in the research armory, especially its location in the schism that has developed between quantitative and qualitative modes of inquiry.

The Methodological Context of Content Analysis

Content analysis is usually associated with the study of inscription contained in published reports, newspapers, adverts, books, web pages, journals, and other forms of documentation. Hence, nearly all of Berelson’s ( 1952 ) illustrations and references to the method relate to the analysis of written records of some kind, and where speech is mentioned, it is almost always in the form of broadcast and published political speeches (such as State of the Union addresses). This association of content analysis with text and documentation is further underlined in modern textbook discussions of the method. Thus, Bryman ( 2008 ), for example, defined CTA as “an approach to the analysis of documents and texts , that seek to quantify content in terms of pre-determined categories” (2008, p. 274, emphasis in original), while Babbie ( 2013 ) stated that CTA is “the study of recorded human communications” (2013, p. 295), and Weber referred to it as a method to make “valid inferences from text” (1990, p. 9). It is clear then that CTA is viewed as a text-based method of analysis, though extensions of the method to other forms of inscriptional material are also referred to in some discussions. Thus, Neuendorf ( 2002 ), for example, rightly referred to analyses of film and television images as legitimate fields for the deployment of CTA and by implication analyses of still—as well as moving—images such as photographs and billboard adverts. Oddly, in the traditional or standard paradigm of CTA, the method is solely used to capture the “message” of a text or speech; it is not used for the analysis of a recipient’s response to or understanding of the message (which is normally accessed via interview data and analyzed in other and often less rigorous ways; see, e.g., Merton, 1968 ). So, in this chapter I suggest that we can take things at least one small step further by using CTA to analyze speech (especially interview data) as well as text.

Standard textbook discussions of CTA usually refer to it as a “nonreactive” or “unobtrusive” method of investigation (see, e.g., Babbie, 2013 , p. 294), and a large part of the reason for that designation is because of its focus on already existing text (i.e., text gathered without intrusion into a research setting). More important, however (and to underline the obvious), CTA is primarily a method of analysis rather than of data collection. Its use, therefore, must be integrated into wider frames of research design that embrace systematic forms of data collection as well as forms of data analysis. Thus, routine strategies for sampling data are often required in designs that call on CTA as a method of analysis. These latter can be built around random sampling methods or even techniques of “theoretical sampling” (Glaser & Strauss, 1967 ) so as to identify a suitable range of materials for CTA. Content analysis can also be linked to styles of ethnographic inquiry and to the use of various purposive or nonrandom sampling techniques. For an example, see Altheide ( 1987 ).

The use of CTA in a research design does not preclude the use of other forms of analysis in the same study, because it is a technique that can be deployed in parallel with other methods or with other methods sequentially. For example, and as I will demonstrate in the following sections, one might use CTA as a preliminary analytical strategy to get a grip on the available data before moving into specific forms of discourse analysis. In this respect, it can be as well to think of using CTA in, say, the frame of a priority/sequence model of research design as described by Morgan ( 1998 ).

As I shall explain, there is a sense in which CTA rests at the base of all forms of qualitative data analysis, yet the paradox is that the analysis of content is usually considered a quantitative (numerically based) method. In terms of the qualitative/quantitative divide, however, it is probably best to think of CTA as a hybrid method, and some writers have in the past argued that it is necessarily so (Kracauer, 1952 ). That was probably easier to do in an age when many recognized the strictly drawn boundaries between qualitative and quantitative styles of research to be inappropriate. Thus, in their widely used text Methods in Social Research , Goode and Hatt ( 1952 ), for example, asserted that “modern research must reject as a false dichotomy the separation between ‘qualitative’ and ‘quantitative’ studies, or between the ‘statistical’ and the ‘non-statistical’ approach” (p. 313). This position was advanced on the grounds that all good research must meet adequate standards of validity and reliability, whatever its style, and the message is well worth preserving. However, there is a more fundamental reason why it is nonsensical to draw a division between the qualitative and the quantitative. It is simply this: All acts of social observation depend on the deployment of qualitative categories—whether gender, class, race, or even age; there is no descriptive category in use in the social sciences that connects to a world of “natural kinds.” In short, all categories are made, and therefore when we seek to count “things” in the world, we are dependent on the existence of socially constructed divisions. How the categories take the shape that they do—how definitions are arrived at, how inclusion and exclusion criteria are decided on, and how taxonomic principles are deployed—constitute interesting research questions in themselves. From our starting point, however, we need only note that “sorting things out” (to use a phrase from Bowker & Star, 1999 ) and acts of “counting”—whether it be of chromosomes or people (Martin & Lynch, 2009 )—are activities that connect to the social world of organized interaction rather than to unsullied observation of the external world.

Some writers deny the strict division between the qualitative and quantitative on grounds of empirical practice rather than of ontological reasoning. For example, Bryman ( 2008 ) argued that qualitative researchers also call on quantitative thinking, but tend to use somewhat vague, imprecise terms rather than numbers and percentages—referring to frequencies via the use of phrases such as “more than” and “less than.” Kracauer ( 1952 ) advanced various arguments against the view that CTA was strictly a quantitative method, suggesting that very often we wished to assess content as being negative or positive with respect to some political, social, or economic thesis and that such evaluations could never be merely statistical. He further argued that we often wished to study “underlying” messages or latent content of documentation and that, in consequence, we needed to interpret content as well as count items of content. Morgan ( 1993 ) argued that, given the emphasis that is placed on “coding” in almost all forms of qualitative data analysis, the deployment of counting techniques is essential and we ought therefore to think in terms of what he calls qualitative as well as quantitative content analysis. Naturally, some of these positions create more problems than they seemingly solve (as is the case with considerations of “latent content”), but given the 21st-century predilection for mixed methods research (Creswell, 2007 ), it is clear that CTA has a role to play in integrating quantitative and qualitative modes of analysis in a systematic rather than merely ad hoc and piecemeal fashion. In the sections that follow, I will provide some examples of the ways in which “qualitative” analysis can be combined with systematic modes of counting. First, however, we must focus on what is analyzed in CTA.

Units of Analysis

So, what is the unit of analysis in CTA? A brief answer is that analysis can be focused on words, sentences, grammatical structures, tenses, clauses, ratios (of, say, nouns to verbs), or even “themes.” Berelson ( 1952 ) gave examples of all of the above and also recommended a form of thematic analysis (cf., Braun & Clarke, 2006 ) as a viable option. Other possibilities include counting column length (of speeches and newspaper articles), amounts of (advertising) space, or frequency of images. For our purposes, however, it might be useful to consider a specific (and somewhat traditional) example. Here it is. It is an extract from what has turned out to be one of the most important political speeches of the current century.

Iraq continues to flaunt its hostility toward America and to support terror. The Iraqi regime has plotted to develop anthrax and nerve gas and nuclear weapons for over a decade. This is a regime that has already used poison gas to murder thousands of its own citizens, leaving the bodies of mothers huddled over their dead children. This is a regime that agreed to international inspections then kicked out the inspectors. This is a regime that has something to hide from the civilized world. States like these, and their terrorist allies, constitute an axis of evil, arming to threaten the peace of the world. By seeking weapons of mass destruction, these regimes pose a grave and growing danger. They could provide these arms to terrorists, giving them the means to match their hatred. They could attack our allies or attempt to blackmail the United States. In any of these cases, the price of indifference would be catastrophic. (George W. Bush, State of the Union address, January 29, 2002)

A number of possibilities arise for analyzing the content of a speech such as the one above. Clearly, words and sentences must play a part in any such analysis, but in addition to words, there are structural features of the speech that could also figure. For example, the extract takes the form of a simple narrative—pointing to a past, a present, and an ominous future (catastrophe)—and could therefore be analyzed as such. There are, in addition, several interesting oppositions in the speech (such as those between “regimes” and the “civilized” world), as well as a set of interconnected present participles such as “plotting,” “hiding,” “arming,” and “threatening” that are associated both with Iraq and with other states that “constitute an axis of evil.” Evidently, simple word counts would fail to capture the intricacies of a speech of this kind. Indeed, our example serves another purpose—to highlight the difficulty that often arises in dissociating CTA from discourse analysis (of which narrative analysis and the analysis of rhetoric and trope are subspecies). So how might we deal with these problems?

One approach that can be adopted is to focus on what is referenced in text and speech, that is, to concentrate on the characters or elements that are recruited into the text and to examine the ways in which they are connected or co-associated. I shall provide some examples of this form of analysis shortly. Let us merely note for the time being that in the previous example we have a speech in which various “characters”—including weapons in general, specific weapons (such as nerve gas), threats, plots, hatred, evil, and mass destruction—play a role. Be aware that we need not be concerned with the veracity of what is being said—whether it is true or false—but simply with what is in the speech and how what is in there is associated. (We may leave the task of assessing truth and falsity to the jurists). Be equally aware that it is a text that is before us and not an insight into the ex-president’s mind, or his thinking, or his beliefs, or any other subjective property that he may have possessed.

In the introductory paragraph, I made brief reference to some ideas of the German philosopher Jürgen Habermas ( 1987 ). It is not my intention here to expand on the detailed twists and turns of his claims with respect to the role of language in the “lifeworld” at this point. However, I do intend to borrow what I regard as some particularly useful ideas from his work. The first is his claim—influenced by a strong line of 20th-century philosophical thinking—that language and culture are constitutive of the lifeworld (Habermas, 1987 , p. 125), and in that sense we might say that things (including individuals and societies) are made in language. That is a simple justification for focusing on what people say rather than what they “think” or “believe” or “feel” or “mean” (all of which have been suggested at one time or another as points of focus for social inquiry and especially qualitative forms of inquiry). Second, Habermas argued that speakers and therefore hearers (and, one might add, writers and therefore readers), in what he calls their speech acts, necessarily adopt a pragmatic relation to one of three worlds: entities in the objective world, things in the social world, and elements of a subjective world. In practice, Habermas ( 1987 , p. 120) suggested all three worlds are implicated in any speech act, but that there will be a predominant orientation to one of them. To rephrase this in a crude form, when speakers engage in communication, they refer to things and facts and observations relating to external nature, to aspects of interpersonal relations, and to aspects of private inner subjective worlds (thoughts, feelings, beliefs, etc.). One of the problems with locating CTA in “communication research” has been that the communications referred to are but a special and limited form of action (often what Habermas called strategic acts). In other words, television, newspaper, video, and Internet communications are just particular forms (with particular features) of action in general. Again, we might note in passing that the adoption of the Habermassian perspective on speech acts implies that much of qualitative analysis in particular has tended to focus only on one dimension of communicative action—the subjective and private. In this respect, I would argue that it is much better to look at speeches such as George W Bush’s 2002 State of the Union address as an “account” and to examine what has been recruited into the account, and how what has been recruited is connected or co-associated, rather than use the data to form insights into his (or his adviser’s) thoughts, feelings, and beliefs.

In the sections that follow, and with an emphasis on the ideas that I have just expounded, I intend to demonstrate how CTA can be deployed to advantage in almost all forms of inquiry that call on either interview (or speech-based) data or textual data. In my first example, I will show how CTA can be used to analyze a group of interviews. In the second example, I will show how it can be used to analyze a group of policy documents. In the third, I shall focus on a single interview (a “case”), and in the fourth and final example, I will show how CTA can be used to track the biography of a concept. In each instance, I shall briefly introduce the context of the “problem” on which the research was based, outline the methods of data collection, discuss how the data were analyzed and presented, and underline the ways in which CTA has sharpened the analytical strategy.

Analyzing a Sample of Interviews: Looking at Concepts and Their Co-associations in a Semantic Network

My first example of using CTA is based on a research study that was initially undertaken in the early 2000s. It was a project aimed at understanding why older people might reject the offer to be immunized against influenza (at no cost to them). The ultimate objective was to improve rates of immunization in the study area. The first phase of the research was based on interviews with 54 older people in South Wales. The sample included people who had never been immunized, some who had refused immunization, and some who had accepted immunization. Within each category, respondents were randomly selected from primary care physician patient lists, and the data were initially analyzed “thematically” and published accordingly (Evans, Prout, Prior, Tapper-Jones, & Butler, 2007 ). A few years later, however, I returned to the same data set to look at a different question—how (older) lay people talked about colds and flu, especially how they distinguished between the two illnesses and how they understood the causes of the two illnesses (see Prior, Evans, & Prout, 2011 ). Fortunately, in the original interview schedule, we had asked people about how they saw the “differences between cold and flu” and what caused flu, so it was possible to reanalyze the data with such questions in mind. In that frame, the example that follows demonstrates not only how CTA might be used on interview data, but also how it might be used to undertake a secondary analysis of a preexisting data set (Bryman, 2008 ).

As with all talk about illness, talk about colds and flu is routinely set within a mesh of concerns—about causes, symptoms, and consequences. Such talk comprises the base elements of what has at times been referred to as the “explanatory model” of an illness (Kleinman, Eisenberg, & Good, 1978 ). In what follows, I shall focus almost entirely on issues of causation as understood from the viewpoint of older people; the analysis is based on the answers that respondents made in response to the question, “How do you think people catch flu?”

Semistructured interviews of the kind undertaken for a study such as this are widely used and are often characterized as akin to “a conversation with a purpose” (Kahn & Cannell, 1957 , p. 97). One of the problems of analyzing the consequent data is that, although the interviewer holds to a planned schedule, the respondents often reflect in a somewhat unstructured way about the topic of investigation, so it is not always easy to unravel the web of talk about, say, “causes” that occurs in the interview data. In this example, causal agents of flu, inhibiting agents, and means of transmission were often conflated by the respondents. Nevertheless, in their talk people did answer the questions that were posed, and in the study referred to here, that talk made reference to things such as “bugs” (and “germs”) as well as viruses, but the most commonly referred to causes were “the air” and the “atmosphere.” The interview data also pointed toward means of transmission as “cause”—so coughs and sneezes and mixing in crowds figured in the causal mix. Most interesting, perhaps, was the fact that lay people made a nascent distinction between facilitating factors (such as bugs and viruses) and inhibiting factors (such as being resistant, immune, or healthy), so that in the presence of the latter, the former are seen to have very little effect. Here are some shorter examples of typical question–response pairs from the original interview data.

(R:32): “How do you catch it [the flu]? Well, I take it its through ingesting and inhaling bugs from the atmosphere. Not from sort of contact or touching things. Sort of airborne bugs. Is that right?” (R:3): “I suppose it’s [the cause of flu] in the air. I think I get more diseases going to the surgery than if I stayed home. Sometimes the waiting room is packed and you’ve got little kids coughing and spluttering and people sneezing, and air conditioning I think is a killer by and large I think air conditioning in lots of these offices.” (R:46): “I think you catch flu from other people. You know in enclosed environments in air conditioning which in my opinion is the biggest cause of transferring diseases is air conditioning. Worse thing that was ever invented that was. I think so, you know. It happens on aircraft exactly the same you know.”

Alternatively, it was clear that for some people being cold, wet, or damp could also serve as a direct cause of flu; thus: Interviewer: “OK, good. How do you think you catch the flu?”

(R:39): “Ah. The 65 dollar question. Well, I would catch it if I was out in the rain and I got soaked through. Then I would get the flu. I mean my neighbour up here was soaked through and he got pneumonia and he died. He was younger than me: well, 70. And he stayed in his wet clothes and that’s fatal. Got pneumonia and died, but like I said, if I get wet, especially if I get my head wet, then I can get a nasty head cold and it could develop into flu later.”

As I suggested earlier, despite the presence of bugs and germs, viruses, the air, and wetness or dampness, “catching” the flu is not a matter of simple exposure to causative agents. Thus, some people hypothesized that within each person there is a measure of immunity or resistance or healthiness that comes into play and that is capable of counteracting the effects of external agents. For example, being “hardened” to germs and harsh weather can prevent a person getting colds and flu. Being “healthy” can itself negate the effects of any causative agents, and healthiness is often linked to aspects of “good” nutrition and diet and not smoking cigarettes. These mitigating and inhibiting factors can either mollify the effects of infection or prevent a person “catching” the flu entirely. Thus, (R:45) argued that it was almost impossible for him to catch flu or cold “cos I got all this resistance.” Interestingly, respondents often used possessive pronouns in their discussion of immunity and resistance (“my immunity” and “my resistance”)—and tended to view them as personal assets (or capital) that might be compromised by mixing with crowds.

By implication, having a weak immune system can heighten the risk of contracting colds and flu and might therefore spur one to take preventive measures, such as accepting a flu shot. Some people believe that the flu shot can cause the flu and other illnesses. An example of what might be called lay “epidemiology” (Davison, Davey-Smith, & Frankel, 1991 ) is evident in the following extract.

(R:4): “Well, now it’s coincidental you know that [my brother] died after the jab, but another friend of mine, about 8 years ago, the same happened to her. She had the jab and about six months later, she died, so I know they’re both coincidental, but to me there’s a pattern.”

Normally, results from studies such as this are presented in exactly the same way as has just been set out. Thus, the researcher highlights given themes that are said to have emerged from the data and then provides appropriate extracts from the interviews to illustrate and substantiate the relevant themes. However, one reasonable question that any critic might ask about the selected data extracts concerns the extent to which they are “representative” of the material in the data set as a whole. Maybe, for example, the author has been unduly selective in his or her use of both themes and quotations. Perhaps, as a consequence, the author has ignored or left out talk that does not fit the arguments or extracts that might be considered dull and uninteresting compared to more exotic material. And these kinds of issues and problems are certainly common to the reporting of almost all forms of qualitative research. However, the adoption of CTA techniques can help to mollify such problems. This is so because, by using CTA, we can indicate the extent to which we have used all or just some of the data, and we can provide a view of the content of the entire sample of interviews rather than just the content and flavor of merely one or two interviews. In this light, we must consider Figure 19.1 , which is based on counting the number of references in the 54 interviews to the various “causes” of the flu, though references to the flu shot (i.e., inoculation) as a cause of flu have been ignored for the purpose of this discussion. The node sizes reflect the relative importance of each cause as determined by the concept count (frequency of occurrence). The links between nodes reflect the degree to which causes are co-associated in interview talk and are calculated according to a co-occurrence index (see, e.g., SPSS, 2007 , p. 183).

What causes flu? A lay perspective. Factors listed as causes of colds and flu in 54 interviews. Node size is proportional to number of references “as causes.” Line thickness is proportional to co-occurrence of any two “causes” in the set of interviews.

Given this representation, we can immediately assess the relative importance of the different causes as referred to in the interview data. Thus, we can see that such things as (poor) “hygiene” and “foreigners” were mentioned as a potential cause of flu—but mention of hygiene and foreigners was nowhere near as important as references to “the air” or to “crowds” or to “coughs and sneezes.” In addition, we can also determine the strength of the connections that interviewees made between one cause and another. Thus, there are relatively strong links between “resistance” and “coughs and sneezes,” for example.

In fact, Figure 19.1 divides causes into the “external” and the “internal,” or the facilitating and the impeding (lighter and darker nodes). Among the former I have placed such things as crowds, coughs, sneezes, and the air, while among the latter I have included “resistance,” “immunity,” and “health.” That division is a product of my conceptualizing and interpreting the data, but whichever way we organize the findings, it is evident that talk about the causes of flu belongs in a web or mesh of concerns that would be difficult to represent using individual interview extracts alone. Indeed, it would be impossible to demonstrate how the semantics of causation belong to a culture (rather than to individuals) in any other way. In addition, I would argue that the counting involved in the construction of the diagram functions as a kind of check on researcher interpretations and provides a source of visual support for claims that an author might make about, say, the relative importance of “damp” and “air” as perceived causes of disease. Finally, the use of CTA techniques allied with aspects of conceptualization and interpretation has enabled us to approach the interview data as a set and to consider the respondents as belonging to a community, rather than regarding them merely as isolated and disconnected individuals, each with their own views. It has also enabled us to squeeze some new findings out of old data, and I would argue that it has done so with advantage. There are other advantages to using CTA to explore data sets, which I will highlight in the next section.

Analyzing a Sample of Documents: Using Content Analysis to Verify Claims

Policy analysis is a difficult business. To begin, it is never entirely clear where (social, health, economic, environmental) policy actually is. Is it in documents (as published by governments, think tanks, and research centers), in action (what people actually do), or in speech (what people say)? Perhaps it rests in a mixture of all three realms. Yet, wherever it may be, it is always possible, at the very least, to identify a range of policy texts and to focus on the conceptual or semantic webs in terms of which government officials and other agents (such as politicians) talk about the relevant policy issues. Furthermore, insofar as policy is recorded—in speeches, pamphlets, and reports—we may begin to speak of specific policies as having a history or a pedigree that unfolds through time (think, e.g., of U.S. or U.K. health policies during the Clinton years or the Obama years). And, insofar as we consider “policy” as having a biography or a history, we can also think of studying policy narratives.

Though firmly based in the world of literary theory, narrative method has been widely used for both the collection and the analysis of data concerning ways in which individuals come to perceive and understand various states of health, ill health, and disability (Frank, 1995 ; Hydén, 1997 ). Narrative techniques have also been adapted for use in clinical contexts and allied to concepts of healing (Charon, 2006 ). In both social scientific and clinical work, however, the focus is invariably on individuals and on how individuals “tell” stories of health and illness. Yet narratives can also belong to collectives—such as political parties and ethnic and religious groups—just as much as to individuals, and in the latter case there is a need to collect and analyze data that are dispersed across a much wider range of materials than can be obtained from the personal interview. In this context, Roe ( 1994 ) demonstrated how narrative method can be applied to an analysis of national budgets, animal rights, and environmental policies.

An extension of the concept of narrative to policy discourse is undoubtedly useful (Newman & Vidler, 2006 ), but how might such narratives be analyzed? What strategies can be used to unravel the form and content of a narrative, especially in circumstances where the narrative might be contained in multiple (policy) documents, authored by numerous individuals, and published across a span of time rather than in a single, unified text such as a novel? Roe ( 1994 ), unfortunately, was not in any way specific about analytical procedures, apart from offering the useful rule to “never stray too far from the data” (p. xii). So, in this example, I will outline a strategy for tackling such complexities. In essence, it is a strategy that combines techniques of linguistically (rule) based CTA with a theoretical and conceptual frame that enables us to unravel and identify the core features of a policy narrative. My substantive focus is on documents concerning health service delivery policies published from 2000 to 2009 in the constituent countries of the United Kingdom (that is, England, Scotland, Wales, and Northern Ireland—all of which have different political administrations).

Narratives can be described and analyzed in various ways, but for our purposes we can say that they have three key features: they point to a chronology, they have a plot, and they contain “characters.”

All narratives have beginnings; they also have middles and endings, and these three stages are often seen as comprising the fundamental structure of narrative text. Indeed, in his masterly analysis of time and narrative, Ricoeur ( 1984 ) argued that it is in the unfolding chronological structure of a narrative that one finds its explanatory (and not merely descriptive) force. By implication, one of the simplest strategies for the examination of policy narratives is to locate and then divide a narrative into its three constituent parts—beginning, middle, and end.

Unfortunately, while it can sometimes be relatively easy to locate or choose a beginning to a narrative, it can be much more difficult to locate an end point. Thus, in any illness narrative, a narrator might be quite capable of locating the start of an illness process (in an infection, accident, or other event) but unable to see how events will be resolved in an ongoing and constantly unfolding life. As a consequence, both narrators and researchers usually find themselves in the midst of an emergent present—a present without a known and determinate end (see, e.g., Frank, 1995 ). Similar considerations arise in the study of policy narratives where chronology is perhaps best approached in terms of (past) beginnings, (present) middles, and projected futures.

According to Ricoeur ( 1984 ), our basic ideas about narrative are best derived from the work and thought of Aristotle, who in his Poetics sought to establish “first principles” of composition. For Ricoeur, as for Aristotle, plot ties things together. It “brings together factors as heterogeneous as agents, goals, means, interactions, circumstances, unexpected results” (p. 65) into the narrative frame. For Aristotle, it is the ultimate untying or unraveling of the plot that releases the dramatic energy of the narrative.

Characters are most commonly thought of as individuals, but they can be considered in much broader terms. Thus, the French semiotician A. J. Greimas ( 1970 ), for example, suggested that, rather than think of characters as people, it would be better to think in terms of what he called actants and of the functions that such actants fulfill within a story. In this sense, geography, climate, and capitalism can be considered characters every bit as much as aggressive wolves and Little Red Riding Hood. Further, he argued that the same character (actant) can be considered to fulfill many functions, and the same function may be performed by many characters. Whatever else, the deployment of the term actant certainly helps us to think in terms of narratives as functioning and creative structures. It also serves to widen our understanding of the ways in which concepts, ideas, and institutions, as well “things” in the material world, can influence the direction of unfolding events every bit as much as conscious human subjects. Thus, for example, the “American people,” “the nation,” “the Constitution,” “the West,” “tradition,” and “Washington” can all serve as characters in a policy story.

As I have already suggested, narratives can unfold across many media and in numerous arenas—speech and action, as well as text. Here, however, my focus is solely on official documents—all of which are U.K. government policy statements, as listed in Table 19.1 . The question is, How might CTA help us unravel the narrative frame?

It might be argued that a simple reading of any document should familiarize the researcher with elements of all three policy narrative components (plot, chronology, and character). However, in most policy research, we are rarely concerned with a single and unified text, as is the case with a novel; rather, we have multiple documents written at distinctly different times by multiple (usually anonymous) authors that notionally can range over a wide variety of issues and themes. In the full study, some 19 separate publications were analyzed across England, Wales, Scotland, and Northern Ireland.

Naturally, listing word frequencies—still less identifying co-occurrences and semantic webs in large data sets (covering hundreds of thousands of words and footnotes)—cannot be done manually, but rather requires the deployment of complex algorithms and text-mining procedures. To this end, I analyzed the 19 documents using “Text Mining for Clementine” (SPSS, 2007 ).

Text-mining procedures begin by providing an initial list of concepts based on the lexicon of the text but that can be weighted according to word frequency and that take account of elementary word associations. For example, learning disability, mental health, and performance management indicate three concepts, not six words. Using such procedures on the aforementioned documents gives the researcher an initial grip on the most important concepts in the document set of each country. Note that this is much more than a straightforward concordance analysis of the text and is more akin to what Ryan and Bernard ( 2000 ) referred to as semantic analysis and Carley ( 1993 ) has referred to as concept and mapping analysis.

So, the first task was to identify and then extract the core concepts, thus identifying what might be called “key” characters or actants in each of the policy narratives. For example, in the Scottish documents, such actants included “Scotland” and the “Scottish people,” as well as “health” and the “National Health Service (NHS),” among others, while in the Welsh documents it was “the people of Wales” and “Wales” that figured largely—thus emphasizing how national identity can play every bit as important a role in a health policy narrative as concepts such as “health,” “hospitals,” and “well-being.”

Having identified key concepts, it was then possible to track concept clusters in which particular actants or characters are embedded. Such cluster analysis is dependent on the use of co-occurrence rules and the analysis of synonyms, whereby it is possible to get a grip on the strength of the relationships between the concepts, as well as the frequency with which the concepts appear in the collected texts. In Figure 19.2 , I provide an example of a concept cluster. The diagram indicates the nature of the conceptual and semantic web in which various actants are discussed. The diagrams further indicate strong (solid line) and weaker (dashed line) connections between the various elements in any specific mix, and the numbers indicate frequency counts for the individual concepts. Using Clementine , the researcher is unable to specify in advance which clusters will emerge from the data. One cannot, for example, choose to have an NHS cluster. In that respect, these diagrams not only provide an array in terms of which concepts are located, but also serve as a check on and to some extent validation of the interpretations of the researcher. None of this tells us what the various narratives contained within the documents might be, however. They merely point to key characters and relationships both within and between the different narratives. So, having indicated the techniques used to identify the essential parts of the four policy narratives, it is now time to sketch out their substantive form.

Concept cluster for “care” in six English policy documents, 2000–2007. Line thickness is proportional to the strength co-occurrence coefficient. Node size reflects relative frequency of concept, and (numbers) refer to the frequency of concept. Solid lines indicate relationships between terms within the same cluster, and dashed lines indicate relationships between terms in different clusters.

It may be useful to note that Aristotle recommended brevity in matters of narrative—deftly summarizing the whole of the Odyssey in just seven lines. In what follows, I attempt—albeit somewhat weakly—to emulate that example by summarizing a key narrative of English health services policy in just four paragraphs. Note how the narrative unfolds in relation to the dates of publication. In the English case (though not so much in the other U.K. countries), it is a narrative that is concerned to introduce market forces into what is and has been a state-managed health service. Market forces are justified in terms of improving opportunities for the consumer (i.e., the patients in the service), and the pivot of the newly envisaged system is something called “patient choice” or “choice.” This is how the story unfolds as told through the policy documents between 2000 and 2008 (see Table 19.1 ). The citations in the following paragraphs are to the Department of Health publications (by year) listed in Table 19.1 .

The advent of the NHS in 1948 was a “seminal event” (2000, p. 8), but under successive Conservative administrations, the NHS was seriously underfunded (2006, p. 3). The (New Labour) government will invest (2000) or already has (2003, p. 4) invested extensively in infrastructure and staff, and the NHS is now on a “journey of major improvement” (2004, p. 2). But “more money is only a starting point” (2000, p. 2), and the journey is far from finished. Continuation requires some fundamental changes of “culture” (2003, p. 6). In particular, the NHS remains unresponsive to patient need, and “all too often, the individual needs and wishes are secondary to the convenience of the services that are available. This ‘one size fits all’ approach is neither responsive, equitable nor person-centred” (2003, p. 17). In short, the NHS is a 1940s system operating in a 21st-century world (2000, p. 26). Change is therefore needed across the “whole system” (2005, p. 3) of care and treatment.

Above all, we must recognize that we “live in a consumer age” (2000, p. 26). People’s expectations have changed dramatically (2006, p. 129), and people want more choice, more independence, and more control (2003, p. 12) over their affairs. Patients are no longer, and should not be considered, “passive recipients” of care (2003, p. 62), but wish to be and should be (2006, p. 81) actively “involved” in their treatments (2003, p. 38; 2005, p. 18)—indeed, engaged in a partnership (2003, p. 22) of respect with their clinicians. Furthermore, most people want a personalized service “tailor made to their individual needs” (2000, p. 17; 2003, p. 15; 2004, p. 1; 2006, p. 83)—“a service which feels personal to each and every individual within a framework of equity and good use of public money” (2003, p. 6).

To advance the necessary changes, “patient choice” must be and “will be strengthened” (2000, p. 89). “Choice” must be made to “happen” (2003), and it must be “real” (2003, p. 3; 2004, p. 5; 2005, p. 20; 2006, p. 4). Indeed, it must be “underpinned” (2003, p. 7) and “widened and deepened” (2003, p. 6) throughout the entire system of care.

If “we” expand and underpin patient choice in appropriate ways and engage patients in their treatment systems, then levels of patient satisfaction will increase (2003, p. 39), and their choices will lead to a more “efficient” (2003, p. 5; 2004, p. 2; 2006, p. 16) and effective (2003, p. 62; 2005, p. 8) use of resources. Above all, the promotion of choice will help to drive up “standards” of care and treatment (2000, p. 4; 2003, p. 12; 2004, p. 3; 2005, p. 7; 2006, p. 3). Furthermore, the expansion of choice will serve to negate the effects of the “inverse care law,” whereby those who need services most tend to get catered to the least (2000, p. 107; 2003, p. 5; 2006, p. 63), and it will thereby help in moderating the extent of health inequalities in the society in which we live. “The overall aim of all our reforms,” therefore, “is to turn the NHS from a top down monolith into a responsive service that gives the patient the best possible experience. We need to develop an NHS that is both fair to all of us, and personal to each of us” (2003, p. 5).

We can see how most—though not all—of the elements of this story are represented in Figure 19.2. In particular, we can see strong (co-occurrence) links between care and choice and how partnership, performance, control, and improvement have a prominent profile. There are some elements of the web that have a strong profile (in terms of node size and links), but to which we have not referred; access, information, primary care, and waiting times are four. As anyone well versed in English healthcare policy would know, these elements have important roles to play in the wider, consumer-driven narrative. However, by rendering the excluded as well as included elements of that wider narrative visible, the concept web provides a degree of verification on the content of the policy story as told herein and on the scope of its “coverage.”

In following through on this example, we have moved from CTA to a form of discourse analysis (in this instance, narrative analysis). That shift underlines aspects of both the versatility of CTA and some of its weaknesses—versatility in the sense that CTA can be readily combined with other methods of analysis and in the way in which the results of the CTA help us to check and verify the claims of the researcher. The weakness of the diagram compared to the narrative is that CTA on its own is a somewhat one-dimensional and static form of analysis, and while it is possible to introduce time and chronology into the diagrams, the diagrams themselves remain lifeless in the absence of some form of discursive overview. (For a fuller analysis of these data, see Prior, Hughes, & Peckham, 2012 ).

Analyzing a Single Interview: The Role of Content Analysis in a Case Study

So far, I have focused on using CTA on a sample of interviews and a sample of documents. In the first instance, I recommended CTA for its capacity to tell us something about what is seemingly central to interviewees and for demonstrating how what is said is linked (in terms of a concept network). In the second instance, I reaffirmed the virtues of co-occurrence and network relations, but this time in the context of a form of discourse analysis. I also suggested that CTA can serve an important role in the process of verification of a narrative and its academic interpretation. In this section, however, I am going to link the use of CTA to another style of research—case study—to show how CTA might be used to analyze a single “case.”

Case study is a term used in multiple and often ambiguous ways. However, Gerring ( 2004 ) defined it as “an intensive study of a single unit for the purpose of understanding a larger class of (similar) units” (p. 342). As Gerring pointed out, case study does not necessarily imply a focus on N = 1, although that is indeed the most logical number for case study research (Ragin & Becker, 1992 ). Naturally, an N of 1 can be immensely informative, and whether we like it or not, we often have only one N to study (think, e.g., of the 1986 Challenger shuttle disaster or of the 9/11 attack on the World Trade Center). In the clinical sciences, case studies are widely used to represent the “typical” features of a wider class of phenomena and often used to define a kind or syndrome (as in the field of clinical genetics). Indeed, at the risk of mouthing a tautology, one can say that the distinctive feature of case study is its focus on a case in all of its complexity—rather than on individual variables and their interrelationships, which tends to be a point of focus for large N research.

There was a time when case study was central to the science of psychology. Breuer and Freud’s (2001) famous studies of “hysteria” (originally published in 1895) provide an early and outstanding example of the genre in this respect, but as with many of the other styles of social science research, the influence of case studies waned with the rise of much more powerful investigative techniques—including experimental methods—driven by the deployment of new statistical technologies. Ideographic studies consequently gave way to the current fashion for statistically driven forms of analysis that focus on causes and cross-sectional associations between variables rather than ideographic complexity.

In the example that follows, we will look at the consequences of a traumatic brain injury (TBI) on just one individual. The analysis is based on an interview with a person suffering from such an injury, and it was one of 32 interviews carried out with people who had experienced a TBI. The objective of the original research was to develop an outcome measure for TBI that was sensitive to the sufferer’s (rather than the health professional’s) point of view. In our original study (see Morris et al., 2005 ), interviews were also undertaken with 27 carers of the injured with the intention of comparing their perceptions of TBI to those of the people for whom they cared. A sample survey was also undertaken to elicit views about TBI from a much wider population of patients than was studied via interview.

In the introduction, I referred to Habermas and the concept of the lifeworld. Lifeworld ( Lebenswelt ) is a concept that first arose from 20th-century German philosophy. It constituted a specific focus for the work of Alfred Schutz (see, e.g., Schutz & Luckman, 1974 ). Schutz ( 1974 ) described the lifeworld as “that province of reality which the wide-awake and normal adult simply takes-for-granted in an attitude of common sense” (p. 3). Indeed, it was the routine and taken-for-granted quality of such a world that fascinated Schutz. As applied to the worlds of those with head injuries, the concept has particular resonance because head injuries often result in that taken-for-granted quality being disrupted and fragmented, ending in what Russian neuropsychologist A. R. Luria ( 1975 ) once described as “shattered” worlds. As well as providing another excellent example of a case study, Luria’s work is also pertinent because he sometimes argued for a “romantic science” of brain injury—that is, a science that sought to grasp the worldview of the injured patient by paying attention to an unfolding and detailed personal “story” of the individual with the head injury as well as to the neurological changes and deficits associated with the injury itself. In what follows, I shall attempt to demonstrate how CTA might be used to underpin such an approach.

In the original research, we began analysis by a straightforward reading of the interview transcripts. Unfortunately, a simple reading of a text or an interview can, strangely, mislead the reader into thinking that some issues or themes are more important than is warranted by the contents of the text. How that comes about is not always clear, but it probably has something to do with a desire to develop “findings” and our natural capacity to overlook the familiar in favor of the unusual. For that reason alone, it is always useful to subject any text to some kind of concordance analysis—that is, generating a simple frequency list of words used in an interview or text. Given the current state of technology, one might even speak these days of using text-mining procedures such as the aforementioned Clementine to undertake such a task. By using Clementine , and as we have seen, it is also possible to measure the strength of co-occurrence links between elements (i.e., words and concepts) in the entire data set (in this example, 32 interviews), though for a single interview these aims can just as easily be achieved using much simpler, low-tech strategies.

By putting all 32 interviews into the database, several common themes emerged. For example, it was clear that “time” entered into the semantic web in a prominent manner, and it was clearly linked to such things as “change,” “injury,” “the body,” and what can only be called the “I was.” Indeed, time runs through the 32 stories in many guises, and the centrality of time is a reflection of storytelling and narrative recounting in general—chronology, as we have noted, being a defining feature of all storytelling (Ricoeur, 1984 ). Thus, sufferers both recounted the events surrounding their injury and provided accounts as to how the injuries affected their current life and future hopes. As to time present, much of the patient story circled around activities of daily living—walking, working, talking, looking, feeling, remembering, and so forth.

Understandably, the word and the concept of “injury” featured largely in the interviews, though it was a word most commonly associated with discussions of physical consequences of injury. There were many references in that respect to injured arms, legs, hands, and eyes. There were also references to “mind”—though with far less frequency than with references to the body and to body parts. Perhaps none of this is surprising. However, one of the most frequent concepts in the semantic mix was the “I was” (716 references). The statement “I was,” or “I used to” was, in turn, strongly connected to terms such as “the accident” and “change.” Interestingly, the “I was” overwhelmingly eclipsed the “I am” in the interview data (the latter with just 63 references). This focus on the “I was” appears in many guises. For example, it is often associated with the use of the passive voice: “I was struck by a car,” “I was put on the toilet,” “I was shipped from there then, transferred to [Cityville],” “I got told that I would never be able …,” “I was sat in a room,” and so forth. In short, the “I was” is often associated with things, people, and events acting on the injured person. More important, however, the appearance of the “I was” is often used to preface statements signifying a state of loss or change in the person’s course of life—that is, as an indicator for talk about the patient’s shattered world. For example, Patient 7122 stated,

The main (effect) at the moment is I’m not actually with my children, I can’t really be their mum at the moment. I was a caring Mum, but I can’t sort of do the things that I want to be able to do like take them to school. I can’t really do a lot on my own. Like crossing the roads.

Another patient stated,

Everything is completely changed. The way I was … I can’t really do anything at the moment. I mean my German, my English, everything’s gone. Job possibilities is out the window. Everything is just out of the window … I just think about it all the time actually every day you know. You know it has destroyed me anyway, but if I really think about what has happened I would just destroy myself.

Each of these quotations, in its own way, serves to emphasize how life has changed and how the patient’s world has changed. In that respect, we can say that one of the major outcomes arising from TBI may be substantial “biographical disruption” (Bury, 1982 ), whereupon key features of an individual’s life course are radically altered forever. Indeed, as Becker ( 1997 , p. 37) argued in relation to a wide array of life events, “When their health is suddenly disrupted, people are thrown into chaos. Illness challenges one’s knowledge of one’s body. It defies orderliness. People experience the time before their illness and its aftermath as two separate entities.” Indeed, this notion of a cusp in personal biography is particularly well illustrated by Luria’s patient Zasetsky; the latter often refers to being a “newborn creature” (Luria, 1975 , pp. 24, 88), a shadow of a former self (p. 25), and as having his past “wiped out” (p. 116).

However, none of this tells us about how these factors come together in the life and experience of one individual. When we focus on an entire set of interviews, we necessarily lose the rich detail of personal experience and tend instead to rely on a conceptual rather than a graphic description of effects and consequences (to focus on, say, “memory loss,” rather than loss of memory about family life). The contents of Figure 19.3 attempt to correct that vision. Figure 19.3 records all the things that a particular respondent (Patient 7011) used to do and liked doing. It records all the things that he says he can no longer do (at 1 year after injury), and it records all the consequences that he suffered from his head injury at the time of the interview. Thus, we see references to epilepsy (his “fits”), paranoia (the patient spoke of his suspicions concerning other people, people scheming behind his back, and his inability to trust others), deafness, depression, and so forth. Note that, although I have inserted a future tense into the web (“I will”), such a statement never appeared in the transcript. I have set it there for emphasis and to show how, for this person, the future fails to connect to any of the other features of his world except in a negative way. Thus, he states at one point that he cannot think of the future because it makes him feel depressed (see Figure 19.3 ). The line thickness of the arcs reflects the emphasis that the subject placed on the relevant “outcomes” in relation to the “I was” and the “now” during the interview. Thus, we see that factors affecting his concentration and balance loom large, but that he is also concerned about his being dependent on others, his epileptic fits, and his being unable to work and drive a vehicle. The schism in his life between what he used to do, what he cannot now do, and his current state of being is nicely represented in the CTA diagram.

The shattered world of Patient 7011. Thickness of lines (arcs) is proportional to the frequency of reference to the “outcome” by the patient during the interview.

What have we gained from executing this kind of analysis? For a start, we have moved away from a focus on variables, frequencies, and causal connections (e.g., a focus on the proportion of people with TBI who suffer from memory problems or memory problems and speech problems) and refocused on how the multiple consequences of a TBI link together in one person. In short, instead of developing a narrative of acting variables, we have emphasized a narrative of an acting individual (Abbott, 1992 , p. 62). Second, it has enabled us to see how the consequences of a TBI connect to an actual lifeworld (and not simply an injured body). So the patient is not viewed just as having a series of discrete problems such as balancing, or staying awake, which is the usual way of assessing outcomes, but as someone struggling to come to terms with an objective world of changed things, people, and activities (missing work is not, for example, routinely considered an outcome of head injury). Third, by focusing on what the patient was saying, we gain insight into something that is simply not visible by concentrating on single outcomes or symptoms alone—namely, the void that rests at the center of the interview, what I have called the “I was.” Fourth, we have contributed to understanding a type, because the case that we have read about is not simply a case of “John” or “Jane” but a case of TBI, and in that respect it can add to many other accounts of what it is like to experience head injury—including one of the most well documented of all TBI cases, that of Zatetsky. Finally, we have opened up the possibility of developing and comparing cognitive maps (Carley, 1993 ) for different individuals and thereby gained insight into how alternative cognitive frames of the world arise and operate.

Tracing the Biography of a Concept

In the previous sections, I emphasized the virtues of CTA for its capacity to link into a data set in its entirety—and how the use of CTA can counter any tendency of a researcher to be selective and partial in the presentation and interpretation of information contained in interviews and documents. However, that does not mean that we always must take an entire document or interview as the data source. Indeed, it is possible to select (on rational and explicit grounds) sections of documentation and to conduct the CTA on the chosen portions. In the example that follows, I do just that. The sections that I chose to concentrate on are titles and abstracts of academic papers—rather than the full texts. The research on which the following is based is concerned with a biography of a concept and is being conducted in conjunction with a Ph.D. student of mine, Joanne Wilson. Joanne thinks of this component of the study more in terms of a “scoping study” than of a biographical study, and that, too, is a useful framework for structuring the context in which CTA can be used. Scoping studies (Arksey & O’Malley, 2005 ) are increasingly used in health-related research to “map the field” and to get a sense of the range of work that has been conducted on a given topic. Such studies can also be used to refine research questions and research designs. In our investigation, the scoping study was centered on the concept of well-being. Since 2010, well-being has emerged as an important research target for governments and corporations as well as for academics, yet it is far from clear to what the term refers. Given the ambiguity of meaning, it is clear that a scoping review, rather than either a systematic review or a narrative review of available literature, would be best suited to our goals.

The origins of the concept of well-being can be traced at least as far back as the 4th century bc , when philosophers produced normative explanations of the good life (e.g., eudaimonia, hedonia, and harmony). However, contemporary interest in the concept seemed to have been regenerated by the concerns of economists and, most recently, psychologists. These days, governments are equally concerned with measuring well-being to inform policy and conduct surveys of well-being to assess that state of the nation (see, e.g., Office for National Statistics, 2012 )—but what are they assessing?

We adopted a two-step process to address the research question, “What is the meaning of ‘well-being’ in the context of public policy?” First, we explored the existing thesauri of eight databases to establish those higher order headings (if any) under which articles with relevance to well-being might be cataloged. Thus, we searched the following databases: Cumulative Index of Nursing and Allied Health Literature, EconLit, Health Management Information Consortium, Medline, Philosopher’s Index, PsycINFO, Sociological Abstracts, and Worldwide Political Science Abstracts. Each of these databases adopts keyword-controlled vocabularies. In other words, they use inbuilt statistical procedures to link core terms to a set lexis of phrases that depict the concepts contained in the database. Table 19.2 shows each database and its associated taxonomy. The contents of Table 19.2 point toward a linguistic infrastructure in terms of which academic discourse is conducted, and our task was to extract from this infrastructure the semantic web wherein the concept of well-being is situated. We limited the thesaurus terms to well-being and its variants (i.e., wellbeing or well being). If the term was returned, it was then exploded to identify any associated terms.

To develop the conceptual map, we conducted a free-text search for well-being and its variants within the context of public policy across the same databases. We orchestrated these searches across five time frames: January 1990 to December 1994, January 1995 to December 1999, January 2000 to December 2004, January 2005 to December 2009, and January 2010 to October 2011. Naturally, different disciplines use different words to refer to well-being, each of which may wax and wane in usage over time. The searches thus sought to quantitatively capture any changes in the use and subsequent prevalence of well-being and any referenced terms (i.e., to trace a biography).

It is important to note that we did not intend to provide an exhaustive, systematic search of all the relevant literature. Rather, we wanted to establish the prevalence of well-being and any referenced (i.e., allied) terms within the context of public policy. This has the advantage of ensuring that any identified words are grounded in the literature (i.e., they represent words actually used by researchers to talk and write about well-being in policy settings). The searches were limited to abstracts to increase the specificity, albeit at some expense to sensitivity, with which we could identify relevant articles.

We also employed inclusion/exclusion criteria to facilitate the process by which we selected articles, thereby minimizing any potential bias arising from our subjective interpretations. We included independent, stand-alone investigations relevant to the study’s objectives (i.e., concerned with well-being in the context of public policy), which focused on well-being as a central outcome or process and which made explicit reference to “well-being” and “public policy” in either the title or the abstract. We excluded articles that were irrelevant to the study’s objectives, those that used noun adjuncts to focus on the well-being of specific populations (i.e., children, elderly, women) and contexts (e.g., retirement village), and those that focused on deprivation or poverty unless poverty indices were used to understand well-being as opposed to social exclusion. We also excluded book reviews and abstracts describing a compendium of studies.

Using these criteria, Joanne Wilson conducted the review and recorded the results on a template developed specifically for the project, organized chronologically across each database and timeframe. Results were scrutinized by two other colleagues to ensure the validity of the search strategy and the findings. Any concerns regarding the eligibility of studies for inclusion were discussed among the research team. I then analyzed the co-occurrence of the key terms in the database. The resultant conceptual map is shown in Figure 19.4.

The position of a concept in a network—a study of “well-being.” Node size is proportional to the frequency of terms in 54 selected abstracts. Line thickness is proportional to the co-occurrence of two terms in any phrase of three words (e.g., subjective well-being, economics of well-being, well-being and development).

The diagram can be interpreted as a visualization of a conceptual space. So, when academics write about well-being in the context of public policy, they tend to connect the discussion to the other terms in the matrix. “Happiness,” “health,” “economic,” and “subjective,” for example, are relatively dominant terms in the matrix. The node size of these words suggests that references to such entities is only slightly less than references to well-being itself. However, when we come to analyze how well-being is talked about in detail, we see specific connections come to the fore. Thus, the data imply that talk of “subjective well-being” far outweighs discussion of “social well-being” or “economic well-being.” Happiness tends to act as an independent node (there is only one occurrence of happiness and well-being), probably suggesting that “happiness” is acting as a synonym for well-being. Quality of life is poorly represented in the abstracts, and its connection to most of the other concepts in the space is very weak—confirming, perhaps, that quality of life is unrelated to contemporary discussions of well-being and happiness. The existence of “measures” points to a distinct concern to assess and to quantify expressions of happiness, well-being, economic growth, and gross domestic product. More important and underlying this detail, there are grounds for suggesting that there are in fact a number of tensions in the literature on well-being.

On the one hand, the results point toward an understanding of well-being as a property of individuals—as something that they feel or experience. Such a discourse is reflected through the use of words like happiness, subjective , and individual . This individualistic and subjective frame has grown in influence over the past decade in particular, and one of the problems with it is that it tends toward a somewhat content-free conceptualization of well-being. To feel a sense of well-being, one merely states that one is in a state of well-being; to be happy, one merely proclaims that one is happy (cf., Office for National Statistics, 2012 ). It is reminiscent of the conditions portrayed in Aldous Huxley’s Brave New World , wherein the rulers of a closely managed society gave their priority to maintaining order and ensuring the happiness of the greatest number—in the absence of attention to justice or freedom of thought or any sense of duty and obligation to others, many of whom were systematically bred in “the hatchery” as slaves.

On the other hand, there is some intimation in our web that the notion of well-being cannot be captured entirely by reference to individuals alone and that there are other dimensions to the concept—that well-being is the outcome or product of, say, access to reasonable incomes, to safe environments, to “development,” and to health and welfare. It is a vision hinted at by the inclusion of those very terms in the network. These different concepts necessarily give rise to important differences concerning how well-being is identified and measured and therefore what policies are most likely to advance well-being. In the first kind of conceptualization, we might improve well-being merely by dispensing what Huxley referred to as “soma” (a superdrug that ensured feelings of happiness and elation); in the other case, however, we would need to invest in economic, human, and social capital as the infrastructure for well-being. In any event and even at this nascent level, we can see how CTA can begin to tease out conceptual complexities and theoretical positions in what is otherwise routine textual data.

Putting the Content of Documents in Their Place

I suggested in my introduction that CTA was a method of analysis—not a method of data collection or a form of research design. As such, it does not necessarily inveigle us into any specific forms of either design or data collection, though designs and methods that rely on quantification are dominant. In this closing section, however, I want to raise the issue as to how we should position a study of content in our research strategies as a whole. We must keep in mind that documents and records always exist in a context and that while what is “in” the document may be considered central, a good research plan can often encompass a variety of ways of looking at how content links to context. Hence, in what follows, I intend to outline how an analysis of content might be combined with other ways of looking at a record or text and even how the analysis of content might be positioned as secondary to an examination of a document or record. The discussion calls on a much broader analysis, as presented in Prior ( 2011 ).

I have already stated that basic forms of CTA can serve as an important point of departure for many types of data analysis—for example, as discourse analysis. Naturally, whenever “discourse” is invoked, there is at least some recognition of the notion that words might play a part in structuring the world rather than merely reporting on it or describing it (as is the case with the 2002 State of the Nation address that was quoted in the section “Units of Analysis”). Thus, for example, there is a considerable tradition within social studies of science and technology for examining the place of scientific rhetoric in structuring notions of “nature” and the position of human beings (especially as scientists) within nature (see, e.g., work by Bazerman, 1988 ; Gilbert & Mulkay, 1984 ; and Kay, 2000 ). Nevertheless, little, if any, of that scholarship situates documents as anything other than inert objects, either constructed by or waiting patiently to be activated by scientists.

However, in the tradition of the ethnomethodologists (Heritage, 1991 ) and some adherents of discourse analysis, it is also possible to argue that documents might be more fruitfully approached as a “topic” (Zimmerman & Pollner, 1971 ) rather than a “resource” (to be scanned for content), in which case the focus would be on the ways in which any given document came to assume its present content and structure. In the field of documentation, these latter approaches are akin to what Foucault ( 1970 ) might have called an “archaeology of documentation” and are well represented in studies of such things as how crime, suicide, and other statistics and associated official reports and policy documents are routinely generated. That, too, is a legitimate point of research focus, and it can often be worth examining the genesis of, say, suicide statistics or statistics about the prevalence of mental disorder in a community as well as using such statistics as a basis for statistical modeling.

Unfortunately, the distinction between topic and resource is not always easy to maintain—especially in the hurly-burly of doing empirical research (see, e.g., Prior, 2003 ). Putting an emphasis on “topic,” however, can open a further dimension of research that concerns the ways in which documents function in the everyday world. And, as I have already hinted, when we focus on function, it becomes apparent that documents serve not merely as containers of content but also very often as active agents in episodes of interaction and schemes of social organization. In this vein, one can begin to think of an ethnography of documentation. Therein, the key research questions revolve around the ways in which documents are used and integrated into specific kinds of organizational settings, as well as with how documents are exchanged and how they circulate within such settings. Clearly, documents carry content—words, images, plans, ideas, patterns, and so forth—but the manner in which such material is called on and manipulated, and the way in which it functions, cannot be determined (though it may be constrained) by an analysis of content. Thus, Harper’s ( 1998 ) study of the use of economic reports inside the International Monetary Fund provides various examples of how “reports” can function to both differentiate and cohere work groups. In the same way. Henderson ( 1995 ) illustrated how engineering sketches and drawings can serve as what she calls conscription devices on the workshop floor.

Documents constitute a form of what Latour ( 1986 ) would refer to as “immutable mobiles,” and with an eye on the mobility of documents, it is worth noting an emerging interest in histories of knowledge that seek to examine how the same documents have been received and absorbed quite differently by different cultural networks (see, e.g., Burke, 2000 ). A parallel concern has arisen with regard to the newly emergent “geographies of knowledge” (see, e.g., Livingstone, 2005 ). In the history of science, there has also been an expressed interest in the biography of scientific objects (Latour, 1987 , p. 262) or of “epistemic things” (Rheinberger, 2000 )—tracing the history of objects independent of the “inventors” and “discoverers” to which such objects are conventionally attached. It is an approach that could be easily extended to the study of documents and is partly reflected in the earlier discussion concerning the meaning of the concept of well-being. Note how in all these cases a key consideration is how words and documents as “things” circulate and translate from one culture to another; issues of content are secondary.

Studying how documents are used and how they circulate can constitute an important area of research in its own right. Yet even those who focus on document use can be overly anthropocentric and subsequently overemphasize the potency of human action in relation to written text. In that light, it is interesting to consider ways in which we might reverse that emphasis and instead to study the potency of text and the manner in which documents can influence organizational activities as well as reflect them. Thus, Dorothy Winsor ( 1999 ), for example, examined the ways in which work orders drafted by engineers not only shape and fashion the practices and activities of engineering technicians but also construct “two different worlds” on the workshop floor.

In light of this, I will suggest a typology (Table 19.3 ) of the ways in which documents have come to be and can be considered in social research.

While accepting that no form of categorical classification can capture the inherent fluidity of the world, its actors, and its objects, Table 19.3 aims to offer some understanding of the various ways in which documents have been dealt with by social researchers. Thus, approaches that fit into Cell 1 have been dominant in the history of social science generally. Therein, documents (especially as text) have been analyzed and coded for what they contain in the way of descriptions, reports, images, representations, and accounts. In short, they have been scoured for evidence. Data analysis strategies concentrate almost entirely on what is in the “text” (via various forms of CTA). This emphasis on content is carried over into Cell 2–type approaches, with the key differences being that analysis is concerned with how document content comes into being. The attention here is usually on the conceptual architecture and sociotechnical procedures by means of which written reports, descriptions, statistical data, and so forth are generated. Various kinds of discourse analysis have been used to unravel the conceptual issues, while a focus on sociotechnical and rule-based procedures by means of which clinical, police, social work, and other forms of records and reports are constructed has been well represented in the work of ethnomethodologists (see Prior, 2011 ). In contrast, and in Cell 3, the research focus is on the ways in which documents are called on as a resource by various and different kinds of “user.” Here, concerns with document content or how a document has come into being are marginal, and the analysis concentrates on the relationship between specific documents and their use or recruitment by identifiable human actors for purposeful ends. I have pointed to some studies of the latter kind in earlier paragraphs (e.g., Henderson, 1995 ). Finally, the approaches that fit into Cell 4 also position content as secondary. The emphasis here is on how documents as “things” function in schemes of social activity and with how such things can drive, rather than be driven by, human actors. In short, the spotlight is on the vita activa of documentation, and I have provided numerous example of documents as actors in other publications (see Prior, 2003 , 2008 , 2011 ).

Content analysis was a method originally developed to analyze mass media “messages” in an age of radio and newspaper print, well before the digital age. Unfortunately, CTA struggles to break free of its origins and continues to be associated with the quantitative analysis of “communication.” Yet, as I have argued, there is no rational reason why its use must be restricted to such a narrow field, because it can be used to analyze printed text and interview data (as well as other forms of inscription) in various settings. What it cannot overcome is the fact that it is a method of analysis and not a method of data collection. However, as I have shown, it is an analytical strategy that can be integrated into a variety of research designs and approaches—cross-sectional and longitudinal survey designs, ethnography and other forms of qualitative design, and secondary analysis of preexisting data sets. Even as a method of analysis, it is flexible and can be used either independent of other methods or in conjunction with them. As we have seen, it is easily merged with various forms of discourse analysis and can be used as an exploratory method or as a means of verification. Above all, perhaps, it crosses the divide between “quantitative” and “qualitative” modes of inquiry in social research and offers a new dimension to the meaning of mixed methods research. I recommend it.

Abbott, A. ( 1992 ). What do cases do? In C. C. Ragin & H. S. Becker (Eds.), What is a case? Exploring the foundations of social inquiry (pp. 53–82). Cambridge, England: Cambridge University Press.

Google Scholar

Google Preview

Altheide, D. L. ( 1987 ). Ethnographic content analysis.   Qualitative Sociology, 10, 65–77.

Arksey, H. , & O’Malley, L. ( 2005 ). Scoping studies: Towards a methodological framework.   International Journal of Sociological Research Methodology, 8, 19–32.

Babbie, E. ( 2013 ). The practice of social research (13th ed.) Belmont, CA: Wadsworth.

Bazerman, C. ( 1988 ). Shaping written knowledge. The genre and activity of the experimental article in science . Madison: University of Wisconsin Press.

Becker, G. ( 1997 ). Disrupted lives. How people create meaning in a chaotic world . London, England: University of California Press.

Berelson, B. ( 1952 ). Content analysis in communication research . Glencoe, IL: Free Press.

Bowker, G. C. , & Star, S. L. ( 1999 ). Sorting things out. Classification and its consequences . Cambridge, MA: MIT Press.

Braun, V. , & Clarke, V. ( 2006 ). Using thematic analysis in psychology.   Qualitative Research in Psychology, 3, 77–101.

Breuer, J. , & Freud, S. ( 2001 ). Studies on hysteria. In L. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 2). London, England: Vintage.

Bryman, A. ( 2008 ). Social research methods (3rd ed.). Oxford, England: Oxford University Press.

Burke, P. ( 2000 ). A social history of knowledge. From Guttenberg to Diderot . Cambridge, MA: Polity Press.

Bury, M. ( 1982 ). Chronic illness as biographical disruption.   Sociology of Health and Illness, 4, 167–182.

Carley, K. ( 1993 ). Coding choices for textual analysis. A comparison of content analysis and map analysis.   Sociological Methodology, 23, 75–126.

Charon, R. ( 2006 ). Narrative medicine. Honoring the stories of illness . New York, NY: Oxford University Press.

Creswell, J. W. ( 2007 ). Designing and conducting mixed methods research . Thousand Oaks, CA: Sage.

Davison, C. , Davey-Smith, G. , & Frankel, S. ( 1991 ). Lay epidemiology and the prevention paradox.   Sociology of Health & Illness, 13, 1–19.

Evans, M. , Prout, H. , Prior, L. , Tapper-Jones, L. , & Butler, C. ( 2007 ). A qualitative study of lay beliefs about influenza.   British Journal of General Practice, 57, 352–358.

Foucault, M. ( 1970 ). The order of things. An archaeology of the human sciences . London, England: Tavistock.

Frank, A. ( 1995 ). The wounded storyteller: Body, illness, and ethics . Chicago, IL: University of Chicago Press.

Gerring, J. ( 2004 ). What is a case study, and what is it good for?   The American Political Science Review, 98, 341–354.

Gilbert, G. N. , & Mulkay, M. ( 1984 ). Opening Pandora’s box. A sociological analysis of scientists’ discourse . Cambridge, England: Cambridge University Press.

Glaser, B. G. , & Strauss, A. L. ( 1967 ). The discovery of grounded theory. Strategies for qualitative research . New York, NY: Aldine de Gruyter.

Goode, W. J. , & Hatt, P. K. ( 1952 ). Methods in social research . New York, NY: McGraw–Hill.

Greimas, A. J. ( 1970 ). Du Sens. Essays sémiotiques . Paris, France: Ėditions du Seuil.

Habermas, J. ( 1987 ). The theory of communicative action: Vol.2, A critique of functionalist reason ( T. McCarthy , Trans.). Cambridge, MA: Polity Press.

Harper, R. ( 1998 ). Inside the IMF. An ethnography of documents, technology, and organizational action . London, England: Academic Press.

Henderson, K. ( 1995 ). The political career of a prototype. Visual representation in design engineering.   Social Problems, 42, 274–299.

Heritage, J. ( 1991 ). Garkfinkel and ethnomethodology . Cambridge, MA: Polity Press.

Hydén, L-C. ( 1997 ). Illness and narrative.   Sociology of Health & Illness, 19, 48–69.

Kahn, R. , & Cannell, C. ( 1957 ). The dynamics of interviewing. Theory, technique and cases . New York, NY: Wiley.

Kay, L. E. ( 2000 ). Who wrote the book of life? A history of the genetic code . Stanford, CA: Stanford University Press.

Kleinman, A. , Eisenberg, L. , & Good, B. ( 1978 ). Culture, illness & care, clinical lessons from anthropologic and cross-cultural research.   Annals of Internal Medicine, 88, 251–258.

Kracauer, S. ( 1952 ). The challenge of qualitative content analysis.   Public Opinion Quarterly, Special Issue on International Communications Research (1952–53), 16, 631–642.

Krippendorf, K. ( 2004 ). Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks, CA: Sage.

Latour, B. ( 1986 ). Visualization and cognition: Thinking with eyes and hands. Knowledge and Society, Studies in Sociology of Culture, Past and Present, 6, 1–40.

Latour, B. ( 1987 ). Science in action. How to follow scientists and engineers through society . Milton Keynes, England: Open University Press.

Livingstone, D. N. ( 2005 ). Text, talk, and testimony: Geographical reflections on scientific habits. An afterword.   British Society for the History of Science, 38, 93–100.

Luria, A. R. ( 1975 ). The man with the shattered world. A history of a brain wound ( L. Solotaroff , Trans.). Harmondsworth, England: Penguin.

Martin, A. , & Lynch, M. ( 2009 ). Counting things and counting people: The practices and politics of counting.   Social Problems, 56, 243–266.

Merton, R. K. ( 1968 ). Social theory and social structure . New York, NY: Free Press.

Morgan, D. L. ( 1993 ). Qualitative content analysis. A guide to paths not taken.   Qualitative Health Research, 2, 112–121.

Morgan, D. L. ( 1998 ). Practical strategies for combining qualitative and quantitative methods.   Qualitative Health Research, 8, 362–376.

Morris, P. G. , Prior, L. , Deb, S. , Lewis, G. , Mayle, W. , Burrow, C. E. , & Bryant, E. ( 2005 ). Patients’ views on outcome following head injury: A qualitative study,   BMC Family Practice, 6, 30.

Neuendorf, K. A. ( 2002 ). The content analysis guidebook . Thousand Oaks: CA: Sage.

Newman, J. , & Vidler, E. ( 2006 ). Discriminating customers, responsible patients, empowered users: Consumerism and the modernisation of health care,   Journal of Social Policy, 35, 193–210.

Office for National Statistics. ( 2012 ). First ONS annual experimental subjective well-being results . London, England: Office for National Statistics. Retrieved from http://www.ons.gov.uk/ons/dcp171766_272294.pdf

Prior, L. ( 2003 ). Using documents in social research . London, England: Sage.

Prior, L. ( 2008 ). Repositioning documents in social research.   Sociology. Special Issue on Research Methods, 42, 821–836.

Prior, L. ( 2011 ). Using documents and records in social research (4 vols.). London, England: Sage.

Prior, L. , Evans, M. , & Prout, H. ( 2011 ). Talking about colds and flu: The lay diagnosis of two common illnesses among older British people.   Social Science and Medicine, 73, 922–928.

Prior, L. , Hughes, D. , & Peckham, S. ( 2012 ) The discursive turn in policy analysis and the validation of policy stories.   Journal of Social Policy, 41, 271–289.

Ragin, C. C. , & Becker, H. S. ( 1992 ). What is a case? Exploring the foundations of social inquiry . Cambridge, England: Cambridge University Press.

Rheinberger, H.-J. ( 2000 ). Cytoplasmic particles. The trajectory of a scientific object. In Daston, L. (Ed.), Biographies of scientific objects (pp. 270–294). Chicago, IL: Chicago University Press.

Ricoeur, P. ( 1984 ). Time and narrative (Vol. 1., K. McLaughlin & D, Pellauer, Trans.). Chicago, IL: University of Chicago Press.

Roe, E. ( 1994 ). Narrative policy analysis, theory and practice . Durham, NC: Duke University Press.

Ryan, G. W. , & Bernard, H. R. ( 2000 ). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 769–802). Thousand Oaks, CA: Sage.

Schutz, A. , & Luckman, T. ( 1974 ). The structures of the life-world (R. M. Zaner & H. T. Engelhardt, Trans.). London, England: Heinemann.

SPSS. ( 2007 ). Text mining for Clementine . 12.0 User’s Guide. Chicago, IL: SPSS.

Weber, R. P. ( 1990 ). Basic content analysis . Newbury Park, CA: Sage.

Winsor, D. ( 1999 ). Genre and activity systems. The role of documentation in maintaining and changing engineering activity systems.   Written Communication, 16, 200–224.

Zimmerman, D. H. , & Pollner, M. ( 1971 ). The everyday world as a phenomenon. In J. D. Douglas (Ed.), Understanding everyday life (pp. 80–103). London, England: Routledge & Kegan Paul.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Analyst Answers

Data & Finance for Work & Life

content analysis

Qualitative Content Analysis: a Simple Guide with Examples

Content analysis is a type of qualitative research (as opposed to quantitative research) that focuses on analyzing content in various mediums, the most common of which is written words in documents.

It’s a very common technique used in academia, especially for students working on theses and dissertations, but here we’re going to talk about how companies can use qualitative content analysis to improve their processes and increase revenue.

Whether you’re new to content analysis or a seasoned professor, this article provides all you need to know about how data analysts use content analysis to improve their business. It will also help you understand the relationship between content analysis and natural language processing — what some even call natural language content analysis.

Don’t forget, you can get the free Intro to Data Analysis eBook , which will ensure you build the right practical skills for success in your analytical endeavors.

What is qualitative content analysis, and what is it used for?

Any content analysis definition must consist of at least these three things: qualitative language , themes , and quantification .

In short, content analysis is the process of examining preselected words in video, audio, or written mediums and their context to identify themes, then quantifying them for statistical analysis in order to draw conclusions. More simply, it’s counting how often you see two words close to each other.

For example, let’s say I place in front of you an audio bit, a old video with a static image, and a document with lots of text but no titles or descriptions. At the start, you would have no idea what any of it was about.

Let’s say you transpose the video and audio recordings on paper. Then you use a counting software to count the top ten most used words, excluding prepositions (of, over, to, by) and articles (the, a), conjunctions (and, but, or) and other common words like “very.”

Your results are that the top 5 words are “candy,” “snow,” “cold,” and “sled.” These 5 words appear at least 25 times each, and the next highest word appears only 4 times. You also find that the words “snow” and “sled” appear adjacent to each other 95% of the time that “snow” appears.

Well, now you have performed a very elementary qualitative content analysis .

This means that you’re probably dealing with a text in which snow sleds are important. Snow sleds, thus, become a theme in these documents, which goes to the heart of qualitative content analysis.

The goal of qualitative content analysis is to organize text into a series of themes . This is opposed to quantitative content analysis, which aims to organize the text into categories .

Types of qualitative content analysis

If you’ve heard about content analysis, it was most likely in an academic setting. The term itself is common among PhD students and Masters students writing their dissertations and theses. In that context, the most common type of content analysis is document analysis.

There are many types of content analysis , including:

  • Short- and long-form survey questions
  • Focus group transcripts
  • Interview transcripts
  • Legislature
  • Public records
  • Comments sections
  • Messaging platforms

This list gives you an idea for the possibilities and industries in which qualitative content analysis can be applied.

For example, marketing departments or public relations groups in major corporations might collect survey, focus groups, and interviews, then hand off the information to a data analyst who performs the content analysis.

A political analysis institution or Think Tank might look at legislature over time to identify potential emerging themes based on their slow introduction into policy margins. Perhaps it’s possible to identify certain beliefs in the senate and house of representatives before they enter the public discourse.

Non-governmental organizations (NGOs) might perform an analysis on public records to see how to better serve their constituents. If they have access to public records, it would be possible to identify citizen characteristics that align with their goal.

Analysis logic: inductive vs deductive

There are two types of logic we can apply to qualitative content analysis: inductive and deductive. Inductive content analysis is more of an exploratory approach. We don’t know what patterns or ideas we’ll discover, so we go in with an open mind.

On the other hand, deductive content analysis involves starting with an idea and identifying how it appears in the text. For example, we may approach legislation on wildlife by looking for rules on hunting. Perhaps we think hunting with a knife is too dangerous, and we want to identify trends in the text.

Neither one is better per se, and they each have carry value in different contexts. For example, inductive content analysis is advantageous in situations where we want to identify author intent. Going in with a hypothesis can bias the way we look at the data, so the inductive method is better

Deductive content analysis is better when we want to target a term. For example, if we want to see how important knife hunting is in the legislation, we’re doing deductive content analysis.

Measurements: idea coding vs word frequency

Two main methodologies exist for analyzing the text itself: coding and word frequency. Idea coding is the manual process of reading through a text and “coding” ideas in a column on the right. The reason we call this coding is because we take ideas and themes expressed in many words, and turn them into one common phrase. This allows researchers to better understand how those ideas evolve. We will look at how to do this in word below.

In short, coding in the context qualitative content analysis follows 2 steps:

  • Reading through the text one time
  • Adding 2-5 word summaries each time a significant theme or idea appears

Word frequency is simply counting the number of times a word appears in a text, as well as its proximity to other words. In our “snow sled” example above, we counted the number of times a word appeared, as well as how often it appeared next to other words. There’s are online tool for this we’ll look at below.

In short, word frequency in the context of content analysis follows 2 steps:

  • Decide whether you want to find a word, or just look at the most common words
  • Use word’s Replace function for the first, or an online tool such as Text Analyzer for the second (we’ll look at these in more detail below).

Many data scientists consider coding as the only qualitative content analysis, since word frequency turns to counting the number of times a word appears, making is quantitative.

While there is merit to this claim, I personally do not consider word frequency a part of quantitative content analysis. The fact that we count the frequency of a word does not mean we can draw direct conclusions from it. In fact, without a researcher to provide context on the number of time a word appears, word frequency is useless. True quantitative research carries conclusive value on its own.

Measurements AND analysis logic

There are four ways to approach qualitative content analysis given our two measurement types and inductive/deductive logical approaches. You could do inductive coding, inductive word frequency, deductive coding, and deductive word frequency.

The two best are inductive coding and deductive word frequency. If you would like to discover a document, trying to search for specific words will not inform you about its contents, so inductive word frequency is un-insightful.

Likewise, if you’re looking for the presence of a specific idea, you do not want to go through the whole document to code just to find it, so deductive coding is not insightful. Here’s simple matrix to illustrate:

Qualitative content analysis example

We looked at a small example above, but let’s play out all of the above information in a real world example. I will post the link to the text source at the bottom of the article, but don’t look at it yet . Let’s jump in with a discovery mentality , meaning let’s use an inductive approach and code our way through each paragraph.

Qualitative Content Analysis Example Download

*Click the “1” superscript to the right for a link to the source text. 1

How to do qualitative content analysis

We could use word frequency analysis to find out which are the most common x% of words in the text (deductive word frequency), but this takes some time because we need to build a formula that excludes words that are common but that don’t have any value (a, the, but, and, etc).

As a shortcut, you can use online tools such as Text Analyzer and WordCounter , which will give you breakdowns by phrase length (6 words, 5 words, 4 words, etc), without excluding common terms. Here are a few insightful example using our text with 7 words:

content analysis research method example

Perhaps more insightfully, here is a list of 5 word combinations, which are much more common:

content analysis research method example

The downside to these tools is that you cannot find 2- and 1-word strings without excluding common words. This is a limitation, but it’s unlikely that the work required to get there is worth the value it brings.

OK. Now that we’ve seen how to go about coding our text into quantifiable data, let’s look at the deductive approach and try to figure out if the text contains a single word we’re looking for. (This is my favorite.)

Deductive word frequency

We know the text now because we’ve already looked through it. It’s about the process of becoming literate, namely, the elements that impact our ability to learn to read. But we only looked at the first four sections of the article, so there’s more to explore.

Let’s say we want to know how a household situation might impact a student’s ability to read . Instead of coding the entire article, we can simply look for this term and it’s synonyms. The process for deductive word frequency is the following:

  • Identify your term
  • Think of all the possible synonyms
  • Use the word find function to see how many times they appear
  • If you suspect that this word often comes in connection with others, try searching for both of them

In my example, the process would be:

  • Parents, parent, home, house, household situation, household influence, parental, parental situation, at home, home situation
  • Go to “Edit>Find>Replace…” This will enable you to locate the number of instances in which your word or combinations appear. We use the Replace window instead of the simply Find bar because it allows us to visualize the information.
  • Accounted for in possible synonyms

The results: 0! None of these words appeared in the text, so we can conclude that this text has nothing to do with a child’s home life and its impact on his/her ability to learn to read. Here’s a picture:

deductive word frequency content analysis

Don’t Be Afraid of Content Analysis

Content analysis can be intimidating because it uses data analysis to quantify words. This article provides a starting point for your analysis, but to ensure you get 90% reliability in word coding, sign up to receive our eBook Beginner Content Analysis . I went from philosophy student to a data-heavy finance career, and I created it to cater to research and dissertation use cases.

content analysis research method example

Content analysis vs natural language processing

While similar, content analysis, even the deductive word frequency approach, and natural language processing (NLP) are not the same. The relationship is hierarchical. Natural language processing is a field of linguistics and data science that’s concerned with understanding the meaning behind language.

On the other hand, content analysis is a branch of natural language processing that focuses on the methodologies we discussed above: discovery-style coding (sometimes called “tokenization”) and word frequency (sometimes called the “bag of words” technique)

For example, we would use natural language processing to quantify huge amounts of linguistic information, turn it into row-and-column data, and run tests on it. NLP is incredibly complex in the details, which is why it’s nearly impossible to provide a synopsis or example technique here (we’ll provide them in coursework on AnalystAnswers.com ). However, content analysis only focuses on a few manual techniques.

Content analysis in marketing

Content analysis in marketing is the use of content analysis to improve marketing reach and conversions. has grown in importance over the past ten years. As digital platforms become more central to our understanding and interaction with others, we use them more.

We write out ideas, small texts. We post our thoughts on Facebook and Twitter, and we write blog posts like this one. But we also post videos on youtube and express ourselves in podcasts.

All of these mediums contain valuable information about who we are and what we might want to buy . A good marketer aims to leverage this information in three ways:

  • Collect the data
  • Analyze the data
  • Modify his/her marketing messaging to better serve the consumer
  • Pretend, with bots or employees, to be a consumer and craft messages that influence potential buyers

The challenge for marketers doing this is getting the rights to access this data. Indeed, data privacy laws have gone into play in the European Union (General Data Protection Regulation, or GDPR) as well as in Brazil (General Data Protection Law, or GDPL).

Content analysis vs narrative analysis

Content analysis is concerned with themes and ideas, whereas narrative analysis is concerned with the stories people express about themselves or others. Narrative analysis uses the same tools as content analysis, namely coding (or tokenization) and word frequency, but its focus is on narrative relationship rather than themes. This is easier to understand with an example. Let’s look at how we might code the following paragraph from the two perspectives:

I do not like green eggs and ham. I do not like them, Sam-I-Am. I do not like them here or there. I do not like them anywhere!

Content analysis : the ideas expressed include green eggs and ham. the narrator does not like them

Narrative analysis : the narrator speaks from first person. He has a relationship with Sam-I-Am. He orients himself with regards to time and space. he does not like green eggs and ham, and may be willing to act on that feeling.

Content analysis vs document analysis

Content analysis and document analysis are very similar, which explains why many people use them interchangeably. The core difference is that content analysis examines all mediums in which words appear , whereas document analysis only examines written documents .

For example, if I want to carry out content analysis on a master’s thesis in education, I would consult documents, videos, and audio files. I may transcribe the video and audio files into a document, but I wouldn’t exclude them form the beginning.

On the other hand, if I want to carry out document analysis on a master’s thesis, I would only use documents, excluding the other mediums from the start. The methodology is the same, but the scope is different. This dichotomy also explains why most academic researchers performing qualitative content analysis refer to the process as “document analysis.” They rarely look at other mediums.

Content Gap Analysis

Content gap analysis is a term common in the field of content marketing, but it applies to the analytical fields as well. In a sentence, content gap analysis is the process of examining a document or text and identifying the missing pieces, or “gap,” that it needs to be completed.

As you can imagine, a content marketer uses gap analysis to determine how to improve blog content. An analyst uses it for other reasons. For example, he/she may have a standard for documents that merit analysis. If a document does not meet the criteria, it must be rejected until it’s improved.

The key message here is that content gap analysis is not content analysis. It’s a way of measuring the distance an underperforming document is from an acceptable document. It is sometimes, but not always, used in a qualitative content analysis context.

  • Link to Source Text [ ↩ ]

About the Author

Noah is the founder & Editor-in-Chief at AnalystAnswers. He is a transatlantic professional and entrepreneur with 5+ years of corporate finance and data analytics experience, as well as 3+ years in consumer financial products and business software. He started AnalystAnswers to provide aspiring professionals with accessible explanations of otherwise dense finance and data concepts. Noah believes everyone can benefit from an analytical mindset in growing digital world. When he's not busy at work, Noah likes to explore new European cities, exercise, and spend time with friends and family.

File available immediately.

content analysis research method example

Notice: JavaScript is required for this content.

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP0996Y

researchprospect post subheader

What is Content Analysis – Steps & Examples

Published by Alvin Nicolas at August 16th, 2021 , Revised On August 29, 2023

“The content analysis identifies specific words, patterns, concepts, themes, phrases, characters, or sentences within the recorded communication content.”

To conduct content analysis, you need to gather data from multiple sources; it can be anything or any form of data, including text, audio, or videos.

Depending on the requirements of your analysis, you may have to use a  primary or secondary form of data , including:

The Purpose of Content Analysis

There are so many objectives of content analysis. Some fundamental objectives are given below.

  • To simplify the content.
  • To get a clear, in-depth meaning of the language.
  • To identify the uses of language.
  • To know the impact of language on society.
  • To find out the association of the language with cultures, interpersonal relationships, and communication.
  • To gain an in-depth understanding of the concept.
  • To find out the context, behaviour, and response of the speaker.
  • To analyse the trends and association between the text and multimedia.

When to Use Content Analysis? 

There are many uses of the content analysis; some of them are listed below:

The content analysis is used.

  • To represent the content precisely, breaking it into short form.
  • To describe the characteristics of the content.
  • To support an argument.
  • It is used in many walks of life, including marketing, media, literature, etc.
  • It is used for extracting essential information from a large amount of data.

Types of Content Analysis

Content analysis is a broad concept, and it has various types depending on various fields. However, people from all walks of life use it at their convenience. Some of the popular methods are given below:

Confused between qualitative and quantitative methods of data analysis? No idea what discourse and content analysis are?

We hear you.

  • Whether you want a full dissertation written or need help forming a dissertation proposal, we can help you with both.
  • Get different dissertation services at ResearchProspect and score amazing grades!

Advantages and Disadvantages of Content Analysis

Content analysis has so many benefits, which are given below.

Content analysis:

  • Offers both qualitative and quantitative analysis of the communication.
  • Provides an in-depth understanding of the content by making it precise.
  • Enables us to understand the context and perception of the speaker.
  • Provides insight into complex models of human thoughts and language use.
  • Provides historical/cultural insight.
  • It can be applied at any given time, place, and people.
  • It helps to learn any language, its origin, and association with society and culture

Disadvantages

There are also some disadvantages of using the method of content analysis which are given below:

  • is very time-consuming.
  • Cannot interpret a large amount of data accurately and is subjected to increased error.
  • Cannot be computerised easily.

How to Conduct a Content Analysis?

If you want to conduct the content analysis, so here are some steps that you have to follow for that purpose. Those steps are given below.

Develop a Research Question and Select the Content

It’s essential to have a  research question to proceed with your study.  After selecting your research question, you need to find out the relevant resources to analyse.

Example:  If you want to find out the impact of plagiarism on the credibility of the authors. You can examine the relevant materials available on the topic from the internet, newspapers, and books published during the past 5-10 years.

Could you read it Thoroughly?

At this point, you have to read the content thoroughly until you understand it. 

Condensation

It would help if you broke the text into smaller portions for clear interpretation. In short, you have to create categories or smaller text from a large amount of given data.

The unit of analysis  is the basic unit of text to be classified. It can be a word, phrase, a theme, a plot, a newspaper article.

Code the Content

It takes a long to go through the textual data. Coding is a way of tagging the data and organising it into a sequence of symbols, numbers, and letters to highlight the relevant points. At this point, you have to draw meanings from those condensed parts. You have to understand the meaning and context of the text and the speaker clearly. 

Analyse and Interpret the Data

You can use statistical analysis to analyse the data. It is a method of collecting, analysing, and interpreting ample data to discover underlying patterns and details. Statistics are used in every field to make better decisions. It would help if you aimed to retain the meaning of the content while making it precise.

Frequently Asked Questions

How to perform content analysis.

To perform content analysis:

  • Define research objectives.
  • Select a representative sample.
  • Develop coding categories.
  • Analyze content systematically.
  • Apply coding to data.
  • Interpret results to draw insights about themes, patterns, and meanings.

You May Also Like

Inductive and deductive reasoning takes into account assumptions and incidents. Here is all you need to know about inductive vs deductive reasoning.

This article presents the key advantages and disadvantages of secondary research so you can select the most appropriate research approach for your study.

This post provides the key disadvantages of secondary research so you know the limitations of secondary research before making a decision.

As Featured On

client logo

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

Splash Sol LLC

payment mehtod

  • How It Works

Simultaneous comparison of three methods for bone quality assessment

  • Original Article
  • Published: 30 October 2024

Cite this article

content analysis research method example

  • Xingxiao Pu 1 , 2   na1 ,
  • Chengkui Geng 1 , 3   na1 ,
  • Weiping Xiao 1 ,
  • Shao Gu 1 ,
  • Daxing Wang 1 ,
  • Chengwei Liu 1 ,
  • Haifeng Li 1 &
  • Bailian Liu 1  

The study aims to investigate the correlations between the T score, Hounsfield units (HU) value, and vertebral bone quality (VBQ) score, and to compare their discrimination capability for patients with osteoporotic vertebral compression fracture (OVCF).

One hundred and sixty-three eligible participants were enrolled (49 OVCF group,114 non-OVCF group). The T score, HU value, and VBQ score were collected retrospectively. Then, those three parameters were compared between the OVCF and non-OVCF groups and the correlations among the three were assessed. Finally, the discrimination capability of those parameters was compared by the receiver operating characteristic (ROC) curves.

The OVCF group showed a lower T score, lower HU value, and higher VBQ score (all P  < 0.001) than the non-OVCF group. Correlations were observed among the T score, HU value, and VBQ score (all P  < 0.001, HU VS. mean T score, r  = 0.66; HU VS. minimum T score, r  = 0.67; VBQ VS. mean/ minimum T score, r =-0.33; VBQ VS. HU, r =-0.45). The HU value indicated the maximum area under curve (AUC), followed by the VBQ score and then the T score. Moreover, the AUC of combining the VBQ score and the HU value was similar to that of the HU value.

Conclusions

Both the HU value and the VBQ score had superior discrimination capability for patients with OVCF compared to the T score, especially for the HU value. For patients with routinely performed lumbar MRI or CT scans, the HU value or the VBQ score may provide alternative options for assessing the bone condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

content analysis research method example

Abbreviations

Vertebral bone quality

Dual-energy X-ray absorptiometry

Magnetic resonance imaging

Computed tomography

Hounsfield units

Osteoporotic vertebral compression fracture

Body mass index

Vertebral cancellous bone

Signal intensity

Cerebrospinal fluid

Picture archiving and communication system

Region of interest

Intraclass correlation coefficient

Receiver operating characteristic

Area under curve

Curry SJ, Krist AH, Owens DK et al (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force Recommendation Statement. JAMA 319:2521–2531

Article   PubMed   Google Scholar  

Anam AK, Insogna K (2021) Update on osteoporosis screening and management. Med Clin North Am 105:1117–1134

Jin J (2018) Screening for osteoporosis to prevent fractures. JAMA 319:2566

Gregson CL, Compston JE (2022) New national osteoporosis guidance-implications for geriatricians. Age Ageing 51

Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C (2019) Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol 15:535–547

Schuit SCE, van der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

Article   CAS   PubMed   Google Scholar  

Muraki S, Yamamoto S, Ishibashi H et al (2004) Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 15:724–728

Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595

Article   PubMed   PubMed Central   Google Scholar  

Sebro R, De la Garza-Ramos C (2023) Opportunistic screening for osteoporosis and osteopenia from CT scans of the abdomen and pelvis using machine learning. Eur Radiol 33:1812–1823

Jones BC, Lee H, Cheng C-C et al (2023) MRI Quantification of Cortical Bone Porosity, Mineralization, and Morphologic Structure in Postmenopausal Osteoporosis. Radiology :221810

Kadri A, Binkley N, Hernando D, Anderson PA (2022) Opportunistic use of lumbar magnetic resonance imaging for osteoporosis screening. Osteoporos Int 33:861–869

Soliman MAR, Aguirre AO, Kuo CC et al (2023) A novel cervical vertebral bone quality score independently predicts Cage Subsidence after Anterior Cervical Diskectomy and Fusion. Neurosurgery 92:779–786

Li J, Zhang Z, Xie T, Song Z, Song Y, Zeng J (2023) The preoperative Hounsfield unit value at the position of the future screw insertion is a better predictor of screw loosening than other methods. Eur Radiol 33:1526–1536

Hinde K, Maingard J, Hirsch JA, Phan K, Asadi H, Chandra RV (2020) Mortality Outcomes of Vertebral Augmentation (Vertebroplasty and/or Balloon Kyphoplasty) for Osteoporotic Vertebral Compression Fractures: A Systematic Review and Meta-Analysis. Radiology 295

Ehresman J, Schilling A, Pennington Z et al (2019) A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J Neurosurg Spine :1–8

Ehresman J, Pennington Z, Schilling A et al (2020) Novel MRI-based score for assessment of bone density in operative spine patients. Spine J 20:556–562

Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93:1057–1063

Xi Z, Mummaneni PV, Wang M et al (2020) The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. NeuroSurg Focus 49:E8

Ehresman J, Schilling A, Yang X et al (2021) Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J 21:20–27

Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

Zaidi Q, Danisa OA, Cheng W (2019) Measurement Techniques and Utility of Hounsfield Unit Values for Assessment of Bone Quality Prior to Spinal Instrumentation: A Review of Current Literature. Spine (Phila Pa 1976) 44:E239-e244

Alacreu E, Moratal D, Arana E (2017) Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int 28:983–990

Schwaiger BJ, Gersing AS, Baum T, Noël PB, Zimmer C, Bauer JS (2014) Bone mineral density values derived from routine lumbar spine multidetector row CT predict osteoporotic vertebral fractures and screw loosening. AJNR Am J Neuroradiol 35:1628–1633

Article   CAS   PubMed   PubMed Central   Google Scholar  

Seuvic F-M, Gillet R, Louis M et al (2023) Association between opportunistic vertebral bone density measurements and new vertebral fractures after percutaneous vertebral cementoplasty: a case-control study. Eur Radiol 33:106–115

Jiang L-M, Tong Y-X, Jiang J-J et al (2023) The vertebral hounsfield units can quantitatively predict the risk of adjacent vertebral fractures after percutaneous kyphoplasty. Quant Imaging Med Surg 13:1036–1047

Ji C, Rong Y, Wang J et al (2021) Risk factors for refracture following primary osteoporotic vertebral Compression fractures. Pain Physician 24:E335–E340

PubMed   Google Scholar  

Bandirali M, Di Leo G, Papini GDE et al (2015) A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol 25:2951–2959

de Paula FJA, Rosen CJ (2020) Marrow adipocytes: origin, structure, and function. Annu Rev Physiol 82:461–484

Shen W, Scherzer R, Gantz M et al (2012) Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and caucasian participants: the CARDIA study. J Clin Endocrinol Metab 97:1337–1346

Mierke A, Ramos O, Macneille R et al (2022) Intra- and inter-observer reliability of the novel vertebral bone quality score. Eur Spine J 31:843–850

Li R, Yin Y, Ji W et al (2022) MRI-based vertebral bone quality score effectively reflects bone quality in patients with osteoporotic vertebral compressive fractures. Eur Spine J 31:1131–1137

Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. The study of Osteoporotic Fractures Research Group. Lancet 341:72–75

Li W, Zhu H, Hua Z et al (2023) Vertebral Bone Quality Score as a Predictor of Pedicle Screw Loosening following Surgery for Degenerative Lumbar Disease. Spine (Phila Pa 1976)

Aynaszyan S, Devia LG, Udoeyo IF, Badve SA, DelSole EM (2022) Patient physiology influences the MRI-based vertebral bone quality score. Spine J 22:1866–1874

Chang HK, Hsu TW, Ku J et al (2021) Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease. J Neurosurg Spine 1–8

Download references

Acknowledgements

We would like to thank Sudan Tang MD (Department of Radiology, Daping Hospital of Army Military Medical University, China) for her valuable guidance for the measurements of different methods of bone quality assessment.

Author information

Xingxiao Pu MD and Chengkui Geng MD contributed equally to the design, planning, conduct and manuscript preparation for this article, and all authors acknowledge that both authors can list as first author.

Authors and Affiliations

Department of Orthopedics, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, P.R. China

Xingxiao Pu, Chengkui Geng, Weiping Xiao, Shao Gu, Daxing Wang, Chengwei Liu, Haifeng Li & Bailian Liu

Department of Orthopedics, West China Hospital, Orthopedic Research Institute, Sichuan University, Chengdu, P.R. China

Xingxiao Pu

Sports Medicine Center, The People’s Hospital of Longhua, Shenzhen, 518100, China

Chengkui Geng

You can also search for this author in PubMed   Google Scholar

Contributions

Xingxiao Pu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Validation, Writing – original draft, Writing – review & editing. Chengkui Geng: Conceptualization, Data curation, Formal analysis, Investigation, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. Daxing Wang: Data curation, Formal analysis, Investigation, Software, Writing – review & editing. Weiping Xiao: Data curation, Formal analysis, Investigation, Writing – review & editing. Shao Gu: Data curation, Investigation, Software. Writing – review & editing. Chengwei Liu: Data curation, Formal analysis, Investigation, Software. Haifeng Li: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. Bailian Liu: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Corresponding authors

Correspondence to Haifeng Li or Bailian Liu .

Ethics declarations

Conflict of interest.

The authors state that this work has no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Pu, X., Geng, C., Xiao, W. et al. Simultaneous comparison of three methods for bone quality assessment. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08532-y

Download citation

Received : 19 November 2023

Revised : 24 September 2024

Accepted : 17 October 2024

Published : 30 October 2024

DOI : https://doi.org/10.1007/s00586-024-08532-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Osteoporosis
  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. Content Analysis Method and Examples

    Determine the type of analysis: Once the sample has been selected, the researcher needs to determine what types of relationships to examine and the level of analysis: word, word sense, phrase, sentence, themes. ... When done well, is considered a relatively "exact" research method. Content analysis is a readily-understood and an inexpensive ...

  2. Content Analysis

    Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, oral, or visual: Books, newspapers and magazines. Speeches and interviews. Web content and social media posts. Photographs and films.

  3. Content Analysis

    Content analysis is a research method used to analyze and interpret the characteristics of various forms of communication, such as text, images, or audio. It involves systematically analyzing the content of these materials, identifying patterns, themes, and other relevant features, and drawing inferences or conclusions based on the findings.

  4. Qualitative Content Analysis 101 (+ Examples)

    Content analysis is a qualitative analysis method that focuses on recorded human artefacts such as manuscripts, voice recordings and journals. Content analysis investigates these written, spoken and visual artefacts without explicitly extracting data from participants - this is called unobtrusive research. In other words, with content ...

  5. Chapter 17. Content Analysis

    Chapter 17. Content Analysis Introduction. Content analysis is a term that is used to mean both a method of data collection and a method of data analysis. Archival and historical works can be the source of content analysis, but so too can the contemporary media coverage of a story, blogs, comment posts, films, cartoons, advertisements, brand packaging, and photographs posted on Instagram or ...

  6. Content Analysis

    Step 1: Select the content you will analyse. Based on your research question, choose the texts that you will analyse. You need to decide: The medium (e.g., newspapers, speeches, or websites) and genre (e.g., opinion pieces, political campaign speeches, or marketing copy)

  7. What is Content Analysis? Uses, Types & Advantages

    Content analysis is a research method used to identify the presence of various concepts, words, and themes in different texts. Two types of content analysis exist: conceptual analysis and relational analysis. In the former, researchers determine whether and how frequently certain concepts appear in a text. In relational analysis, researchers ...

  8. How to do a content analysis

    The advantages and disadvantages of content analysis. A step-by-step guide to conducting a content analysis. Step 1: Develop your research questions. Step 2: Choose the content you'll analyze. Step 3: Identify your biases. Step 4: Define the units and categories of coding. Step 5: Develop a coding scheme.

  9. A hands-on guide to doing content analysis

    A common starting point for qualitative content analysis is often transcribed interview texts. The objective in qualitative content analysis is to systematically transform a large amount of text into a highly organised and concise summary of key results. Analysis of the raw data from verbatim transcribed interviews to form categories or themes ...

  10. Sage Research Methods

    Content analysis is one of the most important but complex research methodologies in the social sciences. In this thoroughly updated Second Edition of The Content Analysis Guidebook, author Kimberly Neuendorf draws on examples from across numerous disciplines to clarify the complicated aspects of content analysis through step-by-step instruction and practical advice.

  11. 10 Content Analysis Examples

    Content analysis is a research method and type of textual analysis that analyzes the meanings of content, which could take the form of textual, visual, aural, and otherwise multimodal texts.. Generally, a content analysis will seek meanings and relationships of certain words and concepts within the text or corpus of texts, and generate thematic data that reveals deeper insights into the text ...

  12. Content Analysis

    Abstract. In this chapter, the focus is on ways in which content analysis can be used to investigate and describe interview and textual data. The chapter opens with a contextualization of the method and then proceeds to an examination of the role of content analysis in relation to both quantitative and qualitative modes of social research.

  13. Content Analysis: A Flexible Methodology

    Content analysis is a highly flexible research method that has been widely used in library and information science (LIS) studies with varying research goals and objectives. The research method is ...

  14. Qualitative Content Analysis: a Simple Guide with Examples

    Here are a few insightful example using our text with 7 words: 7 word strings, inductive word frequency, content analysis. Perhaps more insightfully, here is a list of 5 word combinations, which are much more common: 5 word strings, inductive word frequency, content analysis. The downside to these tools is that you cannot find 2- and 1-word ...

  15. PDF Some examples of qualitative content analysis

    - A mixed methods study about the relationship between gender, text type, and reading experience; - An interview study about priority setting in health care. Little Orphan Annie Lyle Shannon‟s analysis of the newspaper cartoon Little Orphan Annie is an early, classic study using QCA in communication studies for the analysis of visuals (1954).

  16. UCSF Guides: Qualitative Research Guide: Content Analysis

    "Content analysis is a research tool used to determine the presence of certain words, themes, or concepts within some given qualitative data (i.e. text). Using content analysis, researchers can quantify and analyze the presence, meanings, and relationships of such certain words, themes, or concepts." Source: Columbia Public Health

  17. Guide: Using Content Analysis

    Using Content Analysis. This guide provides an introduction to content analysis, a research methodology that examines words or phrases within a wide range of texts. Introduction to Content Analysis: Read about the history and uses of content analysis. Conceptual Analysis: Read an overview of conceptual analysis and its associated methodology.

  18. PDF Qualitative Analysis of Content

    Qualitative content analysis involves a process designed to condense raw data into categories or themes based on valid inference and interpretation. This process uses inductive reasoning, by which themes and categories emerge from the data through the researcher's careful examination and constant comparison.

  19. What is Content Analysis

    Content analysis: Offers both qualitative and quantitative analysis of the communication. Provides an in-depth understanding of the content by making it precise. Enables us to understand the context and perception of the speaker. Provides insight into complex models of human thoughts and language use.

  20. (PDF) Content Analysis

    Content analysis is a widely used qualitative research technique. Rather than being a single method, current applications of content analysis show three distinct approaches: conventional, directed ...

  21. Simultaneous comparison of three methods for bone quality assessment

    Purpose The study aims to investigate the correlations between the T score, Hounsfield units (HU) value, and vertebral bone quality (VBQ) score, and to compare their discrimination capability for patients with osteoporotic vertebral compression fracture (OVCF). Methods One hundred and sixty-three eligible participants were enrolled (49 OVCF group,114 non-OVCF group). The T score, HU value, and ...